
Volleyball Trajectory Prediction Using Real-Time
Object Detection

Carol Song
The Harker School

San Jose, CA
caroltianyao@gmail.com

ABSTRACT
The goal of this project is to determine where a volleyball will
land relative to the player who sent it out. We use the object-
detection system of YOLO, a subset of darknet, to detect both
the server and the ball in action shots of volleyball. For this,
we train YOLO on a custom dataset by having the system
learn how to detect a volleyball and a server from images
that were pulled off the internet and labeled. Using our own
model, we then input our own images of players striking
volleyballs where the distance the ball will travel is known.
From the data of the bounding boxes produced by YOLO, we
are able to use the necessary variables to calculate where the
ball will land. The experiment yields successful results as the
average percent error for the trials is low. Future projects
can utilize these results to build more complex ways to play
volleyball with AI or detect objects in the context of sports.

1 BACKGROUND
YOLO (You Only Look Once) [1, 2] is an open-source object-
detection system based on darknet that can pick out simple,
everyday objects in pictures, videos, and real-time webcams
by creating a bounding box around each detected object. To
achieve this, the system utilizes Convolutional Neural Net-
works (CNN) [4] to process the input data. CNN is the name
for a type of artificial intelligence that is used to perform a
series of operations on the pixels in visual images. These op-
erations are done through many layers of artificial neurons
that process the image by extracting more and more complex
features of the image, starting with the edges of the photo
until it can identify the specific objects in it. YOLO’s system
function can be broken down into three procedures: resid-
ual blocks, bounding block regression, and intersection over
union (IOU). Each image or video frame is split into several
grids so that each cell, or residual block, has its own inner
object to detect. If an object is recognized, a bounding box is
drawn around the entire perimeter of it and the object name,
percent detection accuracy, and coordinates of the box are
outputted. IOU is a value that compares the real box of the
object to the bounding box, and it is employed to eliminate
the bounding boxes that do not match the real box so the
output can be as accurate as possible.

The standard, pre-trained model of YOLO can detect 80
common objects, such as dogs and bicycles. However, users
can also train the system to detect custom objects of their
own choice. YOLO has been used to accomplish a multitude
of projects before. For example, the object detection system
has been used to detect roadside traffic signals such as stop
signs and yield signs and alert the driver of them. It has also
been used to detect people in a building so that the total
number can be counted. For this project, we only need to
train the model to detect 2 objects, balls and servers, which
we will explain the reason for in the next sections.

2 INTRODUCTION
The purpose of this project is to use the YOLO system to
predict where a volleyball in projectile motion will land
relative to the initial location of the ball. To do so, example
images of players hitting balls must be used and from them, 3
data points must be extracted: the height, the angle, and the
speed at which the ball was hit. Inserting these values into
the equation for trajectory motion will yield the distance the
ball has traveled from its initial position, or in other words,
its displacement. The results of this experiment can benefit
future projects involving artificial intelligence and volleyball.
For instance, further developing this model can allow robots
to do advanced things like play volleyball.

In Section 3, we briefly introduce the variables necessary
to conduct the experiment. In Section 4, we dive into exactly
how the custom YOLO model was trained to detect the ball
and the server in each image. In Section 5, we outline the
methods and algorithms used to calculate the final value. In
Section 6, we show a couple of examples of trial runs, as
well as both the data and results from them. In Section 7, we
analyze our results and discuss what possible experimental
errors that may have occurred.

3 METHOD PREFACE
To accomplish the goal, we take videos of a player striking
or passing a volleyball from the side and record the exact
distance between the landing spot and myself, in meters.
This value is the theoretical, or expected value, of each trial.
Then, from each video, we hand pick two frames. The first



frame is the moment closest to after the ball is contacted, and
the second one is the frame right after. In order to derive the
distance in which the ball will travel, we have to first obtain
three variables: the height in which the ball was hit, the angle
in which the ball was hit, and the velocity at which the ball
was hit. Thus, to figure out these numbers, we have to train
YOLO with a custom dataset to detect both volleyballs and
the person sending out the volleyball.

4 MODEL TRAINING
We download around 50 images containing the volley ball
and servers from the Internet. In order to help the system
understand what exactly it should be detecting, we use Open-
Labeling [3], an open-source image and video labeling tool.
To label every picture, we draw boxes around each volleyball
under the class name, "ball", and boxes around each server
under the class name, "server". Next, we set up custom con-
figuration files in a “cfg" folder so that the variables could
match up to our custom dataset. In the .cfg file, we have
modified variables including the line batches and subdivi-
sions. We download the custom weights file to put in the
custom cfg folder. To run darknet, we open a new terminal
and inputted the command:

$ ./darknet detector train custom_cfg/
custom.data custom_cfg/yolov4-custom.cfg
custom_cfg/yolov4.conv.137 -map.

The training process ran for 40+ hours, in which an mAP is
produced from the results. The mAP, short for mean average
precision, is a chart that outlines the training progress by
computing the percent accuracy for each iteration of train-
ing. In the mAP produced for our training, the model hit
100% accuracy in just the 1,400 iterations. The percentage
continued to fluctuate as a result of possible over-training
but we allow to model to run until all the iterations were
complete.
After the system is successfully trained, we run our own

picture frames into the trained model. Instead of calling the
standard configuration and weights files that YOLO provides,
we call the custom ones instead and received the bounding
boxes for each volleyball and server. YOLO automatically
outputs data along with the box, and the applicable ones
are the height of box around the ball, the height of the box
around server, the distance from the top of each box to the
top of the frame (y-coord), and the distance from the left side
of each box to the left side of the frame (x-coord), each of
these given in the unit of pixels.
The computer we use for training has an Intel i7 CPU,

16GB RAM, and an NVIDIA GeForce GTX 1660 Ti GPU. The
operating system is Windows 10.

Figure 1: mAP for the custom model training

5 PREDICTION METHOD AND
ALGORITHM

The first relationship established in the code was the ratio
from pixels to meters, which is obtained by measuring the
diameter of the ball used (around 0.2 meters) and the height
of the bounding box, which is the diameter of the ball in the
picture in pixels. We will be referring to the bounding box
around the ball as the ball-box and the bounding box around
the player as the player-box.
To determine the height in which the ball was sent out,

we add the y-coord and height of the player-box from the
first frame, which gives the distance between the ground in
the image to the top. Then from this value, we subtract the
y-coord of the ball, which generates the distance between the
ground to the top of the ball-box. The last step is to subtract
half of the height of the ball-box, which gives us the distance
from the ground to the center of the volleyball, which is the
height that we are looking for.
Next, we have to figure out the angle in which the ball

was sent. We merge each set of frames into a single picture
in which we ran through YOLO, so that the system detects
both the balls as well as the player. We draw a right triangle
on the picture, with the centers of each ball the vertices for
the hypotenuse. For each ball-box, we solve for the center
by adding half of the diameter of the ball (in pixels) to the
x-coord and to the y-coord. Then, we determine the length
of the legs of the right triangle by subtracting the values of

2



each pair of center coordinates. The angle in which the ball
is stricken will be the arc-tangent of the vertical leg over the
horizontal leg.

Lastly, we determine the velocity at which the ball traveled.
Velocity is determined by the distance the ball traveled by
the time it took to travel the distance. Obtaining the time
was simple: it is the time (in milliseconds) between the two
frames. To figure out the distance, we use the Pythagorean
theorem on the length of the legs of the right triangles that
was determined from the previous step. This gives the length
of the hypotenuse in pixels, which we convert to meters
using the ratio from the diameter of the ball. Thus, we are
able to get the velocity in meters per millisecond.
To determine the distance in which the ball traveled, we

used the formula:

𝑑 = 𝑣 · cos(𝑎) · (𝑣 · sin(𝑎) +
√︁
(𝑣 · sin(𝑎))2 + 2 · 𝑔 · ℎ)/𝑔

where 𝑑 is the distance the ball travels or its displacement,
𝑣 is the velocity of the ball, 𝑔 is the gravitational constant,
which is equal to around 9.8𝑚/𝑠2.

Figure 2: Diagram representing the trajectory path of
an object

We wrote the equations into the Python editor with meth-
ods for each of the three variables and a dictionary for the
data from the bounding boxes which is used in every method.
This code was used for every trial that was conducted.

6 EXAMPLES
Figure 3 is an example of a trial run using our custom trained
YOLO model. The position of the ball right after contact and
the next frame are clearly incorporated into the picture so
that YOLO can detect them with ease. In this figure, both
the balls and the person are detected by the system, with a
bounding box drawn around all of these objects, although
not perfect.

Figure 3: Custom Trained Example 1

Figure 4 is another example of a trial run using our custom
trained model. The position of the ball right after contact
and the next frame are clearly incorporated into the picture
so that YOLO can detect them with ease. However, in this
figure, system has detected only one ball. The person is also
detected, but there are leaves at the top of the frame that are
also detected.

Figure 4: Custom Trained Example 2

As shown from the examples of images that were run
through our trained model, the bounding boxes around each
detected object are still far from precise and not all of the
necessary objects were detected. In order to get maximum
accuracy, we ultimately use the pre-trained YOLO model to
conduct 10 trials as it is far more precise. Figure 5 shows
the bounding boxes that are drawn for the image of Figure
3: Custom Trained Example 1. Note how the edges of the
bounding boxes are almost perfectly wrapped around the
object.

Table 1 depicts both the experimental and theoretical val-
ues of the ten trials that were conducted, as well as the
percent error for each. Out of the ten, seven trials yielded
values smaller than the expected value. Only trials 3, 8, and
10 resulted in values greater than the actual value. The trial

3



Figure 5: Pre-Trained Example 1

that yielded the best result is trial number 8, with a percent
error of just 0.80%.

Table 1: Results of 10 Trials

Trial Predicted Value Actual Value Percent Error
(meters) (meters)

1 10.64 10.92 2.56%
2 7.67 8.74 12.21%
3 9.14 9.02 1.41%
4 9.96 10.16 2.00%
5 14.86 15.16 2.01%
6 9.14 10.77 15.09%
7 11.48 11.91 3.62%
8 12.72 12.62 0.80%
9 12.11 12.98 6.65%
10 12.09 10.92 10.70%

7 ANALYSIS
Noticeably, the bounding boxes drawn around both the balls
and the player are not perfectly precise in both the examples.
In example 1, the percent error is 2.56% and in experiment
2, the percent error is 12.21%. Both bounding boxes for the
server does not exactly line up with the feet, which causes
the initial height of the ball to be derived as greater than it
should be. This is the reason why we ultimately used the
pre-trained model of YOLO to test our algorithm. Still, the
predicted values were not completely precise, most being
smaller than the actual value. Experimental errors that may
have occurred include the wind and the camera angle. The
wind, depending on its direction, could have pushed the ball
away from its initial position, causing the value to be greater
than it should be, or towards, which decreases its value. If
the ball was not sent at an angle perpendicular to the camera,

the results will vary from the theoretical value as well. If
the camera was slightly to towards the back, then the angle
would have been measured as greater than it should be. Thus,
since the angle is proportional to the distance in the equation,
the experimental value would have been calculated to be
greater than it should be as well. Vise versa, if the camera
was held slightly more to the forward of the server, than
the calculated distance would have come out less than it
should be, which is likely something that had happened in
this experiment. Still, the experiment is quite accurate; the
average percent error of all ten trials conducted is around
5.71%.

8 CONCLUSION
The purpose of this experiment was to determinewhere a vol-
leyball in projectile motion will land relative to its initial po-
sition. We utilized= the YOLO system to detect the necessary
objects in video frames to provide the data needed to conduct
the experiment. To improve the results of this experiment,
we can train YOLO on a custom dataset with more images.
The process will take much longer but yield more accurate
detections. Thus, we can complete the project using our own
model instead of the pre-trained one. In the future, we can ex-
pand on this project by using our model to detect and predict
in real-time. This information could be used to teach robots
how to play volleyball or create volleyball training machines
that are more efficient. The code used for this project is avail-
able on Github at “https://github.com/carolsonggg/YOLO-
volleyball".

9 ACKNOWLEDGEMENTS
This project was completed during a summer internship
under Professor Zhu Han of Electrical Engineering at the
University of Houston. A special thank goes to my parents
who helped me take the videos and measurements needed
for the trials and supported me throughout the process.

REFERENCES
[1] [n.d.]. Darknet. https://github.com/pjreddie/darknet.
[2] Alexey Bochkovskiy, Chien-YaoWang, and Hong-Yuan Mark Liao. 2020.

YOLOv4: Optimal Speed and Accuracy of Object Detection. CoRR
abs/2004.10934 (2020). arXiv:2004.10934 https://arxiv.org/abs/2004.
10934

[3] J. Cartucho, R. Ventura, and M. Veloso. 2018. Robust Object Recognition
Through Symbiotic Deep Learning In Mobile Robots. In 2018 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). 2336–
2341.

[4] Rahul Chauhan, Kamal Kumar Ghanshala, and R.C Joshi. 2018. Convo-
lutional Neural Network (CNN) for Image Detection and Recognition.
In First International Conference on Secure Cyber Computing and Com-
munication (ICSCCC).

4

https://github.com/pjreddie/darknet
https://arxiv.org/abs/2004.10934
https://arxiv.org/abs/2004.10934

	Abstract
	1 Background
	2 Introduction
	3 Method Preface
	4 Model Training
	5 Prediction Method and Algorithm
	6 Examples
	7 Analysis
	8 Conclusion
	9 Acknowledgements
	References

