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Abstract—Wireless network virtualization is basically the abstraction, isolation, and sharing of wireless resources among different
entities. Consequently, virtualization provides great flexibility and higher network efficiency, and enables easier migration to new
technologies in wireless networks. Traditionally, a wireless network virtualization controller manages the virtual resources (including
radio resources and infrastructure resources) known as slices which are available to the Service Providers (SPs). The SPs then
allocate their purchased resources to serve their subscribed mobile users. Such a centralized allocation decouples the
Quality-of-Service (QoS) management by the SPs from the virtual resource management by the controller. In this paper, we propose a
matching based wireless network virtualization resource allocation mechanism: a distributed three-sided (3D) matching between radio
resources, physical infrastructure and mobile users. The Restricted Three-sided Matching with Size and Cyclic preference model
(R-TMSC) is implemented to obtain a stable solution. Simulation results show that our proposed spectrum-oriented and user-oriented
algorithms outperform the traditional resource allocation schemes. The spectrum-oriented algorithm enhances the user throughput and
the system performance, within a lesser run time. Furthermore, for an increasing number of users, the proposed algorithms serve more
users than traditional methods.

Index Terms—Three-sided matching, wireless network virtualization, cyclic preferences.
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1 INTRODUCTION

V IRTUALIZATION is becoming an increasingly popular con-
cept, applied in many areas such as virtual memory, virtual

machines, and virtual data centers [1]. Network virtualization is
the technology in which there exists a number of virtual networks,
each of which is a partition or aggregation of the underlying
physical substrate network [2]. It involves the abstraction, iso-
lation, and sharing of resources among different entities. This
enables supporting heterogeneous applications, without having to
modify the existing fundamental architecture. As a result, network
virtualization offers great network flexibility, maximizes network
utilization, and inspires innovation in products and services [3].

The implementation of virtualization in wired networks, such
as in virtual private networks, has prevailed for decades. With
the current tremendous growth in mobile wireless traffic, due to
the massive user numbers and diverse communication content,
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it is reasonable to extend virtualization to wireless networks.
In wireless networks, virtualization involves the sharing of both
infrastructure and spectrum resources [4]. Multiple virtual net-
works can dynamically share the physical substrate networks,
leading to better management of resources and lower operational
expenses. This paradigm is commonly referred to as wireless
network virtualization [1].

Wireless network virtualization decouples the functionalities
in networks by separating the roles of infrastructure and service,
thus improving the network utilization. In addition, since resource
allocation and management are flexible and more dynamic with
virtual resources than physical resources, new network technolo-
gies can be deployed easily. However, in spite of the vast poten-
tial of wireless network virtualization, several design challenges
remain to be addressed, which include the isolation, discovery
and allocation of resources, mobility and network management,
security and so on [1]. In particular, the resource allocation
challenge calls for comprehensive efforts, as it decides how the
virtual networks are embedded on top of the physical networks,
and thus, directly affecting the network utilization.

A popular way of defining the different roles in wireless
network virtualization is by classifying them into Infrastructure
Providers (InPs), Mobile Virtual Network Operators (MVNOs),
Service Providers (SPs), and end users. Even though [1] discusses
the role of Mobile Virtual Network Providers (MVNPs), which
lease the physical network resources from the InPs and create
virtual resources (and may possess spectrum resources as well),
along with the MVNOs who operate and assign these virtual
resources to the SPs, MVNOs has been discussed as a term used
collectively to include both MVNPs and MVNOs. Hence, for
brevity and to avoid any confusion, we have used the term MVNOs
in the latter sense. That is to say, the InPs own the infrastructure
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resources, while the MVNOs own the spectrum resources and
are responsible for creating and managing the virtual resources
(including both infrastructure and radio resources). The SPs then
rent/purchase virtual resources from the MVNOs in a wholesale
way, and provide specific services such as VoIP, video streaming,
etc., to the end users. In short, virtual resources which exist on
physical network infrastructures owned by InPs, are created and
managed by MVNOs, and are requested by SPs to serve end users.

A traditional resource allocation solution in wireless network
virtualization is to configure the virtual resource/service packages
first and then offer the off-the-rack services to the users [5]. Such
an approach decouples the virtual service generation procedure,
which is accomplished by the MVNOs, from the user service
management procedure, which is accomplished by the SPs. A
wireless network virtualization controller acts as a centralized
entity through which the MVNOs manage the virtual resources.
Henceforth, we will refer to the wireless network virtualization
controller as the wireless network controller for brevity, as this
work deals only with wireless network virtualization. The cen-
tralized allocation of the virtual resources using the wireless
network controller lacks the flexibility needed to meet user specific
requirements and user mobility. Furthermore, resource allocation
solutions are moving from the traditional centralized approaches to
more distributed methods, considering the high density, mobility,
and self-organizing features of next generation wireless networks
like device-to-device (D2D) communication, LTE-unlicensed and
so on. Traditional centralized optimization [6] results in high com-
putational complexity and communication overhead, and hence,
results in the need for less complex and distributed solutions.

Matching theory has emerged as a promising approach for fu-
ture wireless resource allocation, by overcoming some limitations
of optimization and game theory [7], [8], [9], [10]. The major
advantages of matching theory are that we are able to consider
individual utilities for the users and the SPs, and that it provides
a distributed solution while considering the localized preferences
of all the entities [10]. [7] also emphasizes on how the users have
preferences on resources and vice versa based on local informa-
tion, and how the distributed nature of matching takes this into
account. It is also highlighted how for every resource allocation
problem, there exists at least one stable matching (determined
using the Gale-Shapley algorithm) due to the deferred acceptance
method [11]. [8] highlights the stability aspect of matching theory
for a non-regulated scenario, and also how it provides a stable
resource allocation compared to competitive methods based on
game theory.

Matching is a framework that is based on the formation of
mutually beneficial relationships between two sets of entities [12],
[13], [14], and provides mathematically yielding solutions based
on the preferences of these entities. The advantages of matching
theory in wireless resource allocation have been discussed in
detail in [15], which include characterizing the behavior of het-
erogeneous nodes by suitable models, defining general preferences
that can manage Quality-of-Service (QoS) related considerations,
obtaining stable and optimal solutions satisfying the system ob-
jectives, and implementing efficient algorithms at a faster rate.

In this paper, we make use of these advantages of matching
theory to integrate the dynamics between all the three elements
of abstraction in wireless network virtualization, unlike most of
the previous works which dealt mainly with SPs and InPs [16].
Accordingly, we propose a matching-based resource allocation
framework for wireless network virtualization, which matches

three network elements: spectrum, infrastructure, and end users, si-
multaneously. Our three-sided matching framework and the corre-
sponding matching-based solution have the following advantages:
(a) the conventional centralized resource allocation decouples the
virtual service generation procedure by the MVNOs from the user
service management procedure by the SPs, which can yield non-
optimal results compared to our coupled three-sided matching
framework, where all three entities are considered simultaneously;
(b) the time-varying nature of spectrum behavior and the changing
user requirements demand continuous adjustments in resource
allocation, which can be efficiently achieved by the distributed
nature of the matching algorithm. The major contributions of this
paper are briefly summarized as follows:

• We propose a distributed resource allocation framework
for wireless network virtualization, where unlike the con-
ventional decoupled virtual service generation and user
service management, we tackle the problem by modeling
it as a three-sided matching between radio spectrum,
physical infrastructure, and mobile users.

• With joint consideration of user satisfaction, SP revenue,
and system cost-performance, we formulate the three-
sided matching as an optimization problem, which is
NP-hard. Consequently, we model the optimization prob-
lem by exploiting the Three-Dimensional Stable Marriage
model with Cyclic Preferences (3DSM-CYC), in which
each type of agent ranks the other type of agent in its
order of preference, and such three preference lists form a
cycle1.

• In order to accommodate virtualization, we consider a
variant of the 3DSM-CYC model, the Three-sided Match-
ing with Size and Cyclic preference problem (TMSC),
as it allows each agent to have multiple partners. How-
ever, since the process of determining whether a stable
matching exists for a TMSC model itself is NP-complete,
we transform it into a Restricted Three-sided Matching
with Size and Cyclic preference problem (R-TMSC) by
adding a few plausible restrictions. The R-TMSC model
can be solved by the proposed spectrum-oriented and
user-oriented R-TMSC algorithms, and a stable solution
is always guaranteed. The effectiveness of the proposed
algorithm is validated through simulations.

The rest of this paper is organized as follows. We discuss
some of the important previous work relevant to our research in
Section 2. In Section 3, we present the system framework and
assumptions for addressing the resource allocation problem in
wireless network virtualization. Here, two important performance
metrics are discussed in Section 3.1 and Section 3.2. Then, in
Section 4, we formulate the proposed model as an optimization
problem, with the objective of maximizing the system cost-
performance. The three-sided matching-based approach to solve
the optimization problem in a distributed way is explained in
Section 5. In this section, we discuss the concept of stability
in Section 5.1, the TMSC model in Section 5.2, the R-TMSC
model in Section 5.3, the spectrum-oriented R-TMSC model in
Section 5.4, and the user-oriented R-TMSC model in Section 5.5.
We discuss the performance of the proposed algorithm through
simulation results in Section 6. Finally, conclusions are drawn in
Section 7.

1. For example, spectrum ranks only user, user ranks only infrastructure and
infrastructure ranks only spectrum.
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Fig. 1: System model.

2 LITERATURE REVIEW

Since wireless network virtualization is considered to be a
feasible method to achieve better spectrum efficiency, higher data
rate, and lesser cost per bit in 5G networks [6], [17], a great
amount of related research on resource allocation has been going
on [18], [19], [20], [21], [22], [23], [24], [25], [26]. A Software
Defined Networking (SDN) based framework for resource alloca-
tion in wireless network virtualization is proposed in [27], where
the allocated resources are adjusted dynamically according to the
service requirement and network status variations. [28] proposes
an information-centric wireless network virtualization architec-
ture for 5G mobile wireless networks, an important component
of which is an efficient virtual resource allocation scheme. A
Network Virtualization Substrate (NVS) for optimal virtualiza-
tion of wireless resources in cellular networks is designed and
implemented in [29]. In [30], network slicing in 5G is discussed,
where the issue of network resource allocation is dealt with using
an algorithm for handling network slice requests. [31], [32] and
[33] also discuss network slicing in 5G, focusing on enabling
end-to-end network slicing, and on an auction based model for
maximizing the network revenue, and on dynamic allocation of
network resources to different slices, respectively. Network slicing
for Content Delivery Networks (CDN) is discussed in [34]. The
application of network virtualization in smart cities, by enabling
the use of 5G is discussed in [35]. A user mobility and service
usage oriented approach in wireless virtual networks is discussed
in [36].

Due to the tremendous potential of matching theory in wireless
resource allocation scenarios as discussed in [15], methods to at-
tain optimal resource allocation in wireless network virtualization
using matching theory have been prevalent. A novel two-level
hierarchical matching algorithm to separately achieve revenue
maximization for the InPs and MVNOs has been proposed in
[37], by formulating service selection and resource purchasing as
a combinatorial optimization problem. The associations between
users and Base Stations (BSs) have been formulated as a one-
to-many matching game, and a distributed algorithm has been
proposed, that results in stable user-BS matchings [38]. [39] also
proposes a matching game based resource allocation scheme,
simultaneously taking into account the objectives of the InPs
and the multiple network operators. In [40], the stable marriage
model was employed in the resource allocation problem, to attain
matchings between multiple repeaters and vehicle antennas. [41]
utilizes matching theory to arrive at stable two-sided matchings
between different kinds of files generated by source nodes and
relay nodes that forward these files, in Delay Tolerant Networks

(DTN). A framework was proposed to find stable matchings of
users and resources based on the channel and context aware
preference lists in [42]. A route level resource allocation algorithm
was proposed for dynamic topology, through a stable and fair allo-
cation utilizing the stable matching algorithm [43]. A framework
utilizing matching theory, for Cognitive Radio (CR) networks, was
proposed in [44], for content-caching was proposed in [45], and
for LTE-Unlicensed (LTE-U) was proposed in [46].

Even though all of the above mentioned works discussed the
application of matching theory in wireless network virtualization
resource allocation, the optimization for only two sets of entities
have been considered at a time for resource allocation: InPs and
MVNOs, users and BSs, and so on. Therefore, in this work, we
are motivated to address resource allocation in wireless network
virtualization by taking into account the three entities of abstrac-
tion: radio spectrum, physical infrastructure, and mobile users.
This calls for a three-sided matching model, unlike the two-sided
matching game that has been exploited mostly in the literature.
Consequently, we will be able to couple the virtual service
generation by the MVNOs with the user service management by
the SPs.

Three-sided matching succeeds in modeling many real life
situations like the supplier-firm-buyer model [47] etc. A cyclic
three-sided stable matching approach for networking services has
been discussed for the first time in [48], where a three-sided
matching problem has been formulated, by considering the cyclic
three-sided preferences in computer networking systems. The NP-
completeness of determining the existence of stable matching has
been proved, and a restricted version of the three-sided matching
algorithm has been designed. This restricted algorithm has been
proved to arrive at stable matchings, and the effectiveness of the
algorithm has been shown through simulations in [48].

As discussed above, many of the existing research works
have considered two-sided matching games to achieve optimal
resource allocation in wireless network virtualization. However,
according to the authors’ knowledge, a three-sided matching based
approach considering the preferences of three sets of entities has
not been considered for resource allocation in wireless network
virtualization. Therefore, along the lines of the cyclic three-sided
matching discussed in [48], we model the typical wireless network
virtualization scenario as a three-sided matching game between
radio spectrum, physical infrastructure, and mobile users. We
propose a restricted three-sided formulation in order to always
achieve stable results, and propose spectrum-oriented and user-
oriented algorithms to arrive at stable matchings.
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3 SYSTEM MODEL

As already discussed, in wireless network virtualization, the
MVNOs create virtual resources from the physical infrastructure
and radio spectrum resources, which are then allocated to the SPs
to serve the end users. The infrastructure and radio resources
are abstracted and split into slices by the MVNOs to facilitate
virtualization [4]. These slices are then utilized to serve the
users by the SPs, thus ensuring isolation from the underlying
physical networks. Traditionally, the virtual resource allocation
and management are centrally handled by the wireless network
controller, as mentioned in Section 1, which decouples the virtual
service generation from the user resource management. Therefore,
we propose a distributed resource allocation framework which
addresses this issue by modeling the virtual resource allocation
as a three-sided matching between the radio spectrum slices,
physical infrastructure slices, and mobile users. Even though the
proposed approach gives a distributed solution by considering the
localized preferences of the parties involved, the wireless network
controller can still act as the entity to run the three-sided matching
algorithm once the preferences are collected, thus managing the
virtual resources.

To this end, we consider a wireless network virtualization
scenario as shown in Fig. 1, with a set of K spectrum band slices,
S = {s1, s2, ..., sK}, and a set of N physical infrastructure
slices, B = {b1, b2, ..., bN}. For brevity, the spectrum band slices
will be referred to as spectrum bands and the physical infrastruc-
ture slices will be referred to as infrastructures henceforth. All the
spectrum bands are assumed to have identical bandwidth, and the
infrastructures include BSs, access points, core network elements
and so on. The set of subscribed mobile users is represented by
U = {u1, u2, ..., uM}, where M is the number of all users
subscribed to one particular SP. The three-sided matching between
S , B and U can be represented byM⊆ S ×B×U . Henceforth,
we call S , B and U , the matching agents.

Each spectrum band can be shared between multiple in-
frastructures, and is limited by its maximum capacity, qsk =
qs,∀k ∈ {1, 2, . . . ,K} in its allocation to the users. On the other
hand, each infrastructure is shared between multiple spectrum
bands, and is limited by its maximum capacity, qbj = qb,∀j ∈
{1, 2, . . . , N}. In addition, any particular spectrum band assigned
to any particular infrastructure can be shared between multiple
users. In other words, the matching between the spectrum bands,
S , and the infrastructures, B, is a many-to-many matching, while
the matching between the (spectrum band (S), infrastructure (B))
pairs and the users, U , is a one-to-many matching.

We begin by defining the performance metrics from the fol-
lowing two perspectives: user experience and SP revenue.

3.1 User Experience

One of the most important aspects of wireless services, which
the SPs are concerned about is the user satisfaction or user
experience. In order to enhance user satisfaction, we can consider
the users’ Signal to Interference Noise Ratio (SINR) as the key
metric, as it decides the bounds of the channel capacity, and hence,
the quality of the wireless service. Since the channel condition
primarily depends on the transmitter and the receiver rather than
the characteristics of the utilized frequency band, we define user
experience as the SINR between the user and the infrastructure.
In this paper, we specifically deal with the uplink transmission

from the user to the infrastructure. Hence, the SINR will be that
received at the infrastructure. It can be represented as

Γi,j =
Pi,jgi,j
σ2
I + σ2

N

, (1)

∀i ∈ {1, 2, . . . ,M}, and ∀j ∈ {1, 2, . . . , N}, where Γi,j is the
received SINR of infrastructure bj from user ui. Pi,j and gi,j are
the transmitted power and the channel gain between ui and bj ,
respectively. σ2

I represents the channel interference from the other
mobile users due to channel reuse, and σ2

N represents the channel
noise.

3.2 SP Revenue
Another factor that we use to measure the system performance

is the revenue that the SPs earn from the users. The mandatory
revenue is the incentive that motivates SPs to provide better service
to their subscribed users. We assume that each user offers a price
based on its desired rate and requirements. Hence, SPs would
naturally prefer serving the users with higher offers. We define
the SP’s revenue, RSP , as the summation of prices offered by
the matched users minus the summation of the costs paid to
the MVNOs for the matched spectrum resources, which can be
represented as

RSP =
∑
ui∈U

Oi −
∑
sk∈S

Ck =
∑
ui∈U

αri −
∑
sk∈S

Ck, (2)

∀i ∈ {1, 2, . . . ,M}, and ∀k ∈ {1, 2, . . . ,K}, where Oi is the
price that user ui offers to all spectrum bands, based on its desired
transmission rate ri, α is the price per Mb/s, Ck is the price paid
to the MVNO for spectrum band sk.

4 PROBLEM FORMULATION

In the previous section, we discussed two performance metrics,
which are both essential for a good resource allocation scheme in
wireless virtual networks. The system objective in this paper is
designed as a combination of both performance metrics. We define
our system objective as the cost-performance under the three-sided
matching, CPsys, which is represented as

CPsys =

∑
CP (i)

M
, (3)

∀i ∈ {1, 2, . . . ,M}. Here, the cost-performance of the system,
CPsys, is the average of the cost-performance values of all the
users, where the cost-performance value of user ui, CP (i), is
given by

CP (i) =

∑
ρi,j,ksk log(1 + Γki,j)

Oi
, (4)

∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈
{1, 2, . . . ,K}. Here ρi,j,k is a binary value, which is equal to
1, if user ui is utilizing frequency band sk for its downlink trans-
mission through infrastructure bj , and 0, otherwise. Γki,j represents
the actual SINR of user ui, if matched with infrastructure bj and
spectrum sk (also considering the interference from other users
that share the same sk and bj), which is represented as

Γki,j =
Pi,jgi,j
σ2
I + σ2

N

=
Pi,jgi,j∑

i′ 6=i ρi′,j,kPi′,jgi′,j + σ2
N

. (5)
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Taking (3), (4) and (5) into consideration, we formulate the
optimization problem for our scenario, which is expressed as

max
ρi,j,k

CPsys, (6)

s.t.
∑
i,j

ρi,j,k ≤ qs, (7)∑
i,k

ρi,j,k ≤ qb, (8)

Γi,j ≥ Γmin, (9)

ρi,j,k ∈ {0, 1}, (10)

∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈
{1, 2, . . . ,K}. Here (6) is the system objective, which aims at
maximizing the overall cost performance of the system, which is
equivalent to the data rate attained per unit price paid by user
ui. (7) and (8) satisfy the capacity constraints for spectrum sk
and infrastructure bj , respectively, where ρi,j,k is the binary value
indicating downlink transmission, and qs and qb are the maximum
capacities of each spectrum and each infrastructure, respectively.
(9) states the minimum SINR requirement for the selection of
infrastructure bj by user ui, where Γmin is the minimum SINR
threshold.

Obviously, this optimization problem is a Mixed Integer Non-
Linear Programming (MINLP) problem2, which is generally NP-
hard to solve [49]. This motivates us to adopt a feasible sub-
optimal solution. Therefore, we introduce the matching-theory
based distributed approach, the Three-Dimensional Stable Mar-
riage (3DSM) model, which will be discussed in the next section.

5 THREE-SIDED STABLE MATCHING GAME

Three-sided relationships are very common in the social and
economic domains, e.g., the supplier-firm-buyer relationship, the
kidney exchange problem, and so on. Generally, the three-sided
matching can be treated as the three-dimensional generalization
of the Stable Marriage (SM) model [13], where the three types
of matching agents can be considered as men, women and dogs.
This three-dimensional variant of SM is usually referred to as a
3DSM problem. The 3DSM problem, also referred to as the Three
Gender Stable Marriage problem, was introduced by Knuth [50].

Primarily, there are two models of the 3DSM problem, de-
pending on the nature of the agents’ preference lists. For the first
model, each agent might rank in the order of preference, the pairs
of other agents that they are ready to form triples with. In the
second model, the preference lists of each type of agents include
only one type of agents (e.g., men rank only women in the order of
preference, women’s lists contain only dogs, and dogs rank only
men), and is referred to as the 3DSM-CYC problem.

The 3DSM-CYC model was introduced by Ng and Hirschberg
[51], as a restriction on the 3DSM model. As an intriguing variant
of 3DSM, the 3DSM-CYC problem refers to the case in which
the matching agents’ preference lists comprise of only one type
of agents (instead of pairs of agents). However, the problem of
determining whether a given instance of 3DSM-CYC admits a
strongly stable matching is NP-complete as studied by [52].

2. The nonlinearity is caused by Γk
i,j in the system objective.

5.1 Stability
Consider the matching M, as mentioned in Section 3. Let

T = S × B × U denote the set of all possible triples. Hence,
the matching M ⊆ T , is a set of triples from T . In order to
understand the concept of stability for a three-sided matching, we
need to understand the idea of a blocking triple, which is as given
in Definition 1.

Definition 1. Blocking Triple in 3DSM: A triple (sk, ui, bj) 6∈
M, but (sk, ui, bj) ∈ T , in which each of sk, ui, and bj , prefers
triple (sk, ui, bj) to at least one of their current matched partners.

To elaborate, a blocking triple consists of a spectrum, a user and
an infrastructure, each of which has the desire to get matched with
each other as a triple, instead of staying with the current matched
partners inM. A matchingM is said to be stable if there exists
no blocking triple forM [48].

5.2 TMSC Model
In [48], Cui and Jia studied an interesting variant of the 3DSM-

CYC model, the TMSC problem for three-sided networks. TMSC
is different from traditional three-sided matching problems, in that
it allows each agent to have multiple partners.

We use our spectrum-user-infrastructure instance to explain
the TMSC model. In this instance, we assume that spectrums only
rank users, users only rank infrastructures, and infrastructures only
rank spectrums in their orders of preferences. Each agent can be
matched up to a limited number of the other type of agents, that
it ranks in the order of preference. The detailed definition of the
TMSC model is given in Definition 2.

Definition 2. Three-sided Matching with Size and Cyclic Pref-
erence Problem (TMSC): The three-sided matching problem
of TMSC is to find a matching M = {(sk, ui, bj)} with the
maximum cardinality:

max |M|, (11)

s.t. N (M, sk) ≤ qs, (12)

N (M, ui) ≤ qu, (13)

N (M, bj) ≤ qb, (14)

∀i ∈ {1, 2, . . . ,M}, ∀j ∈ {1, 2, . . . , N}, and ∀k ∈
{1, 2, . . . ,K}, where N (M, x) represents the number of part-
ners that x has in the matchingM3. (11) represents the cardinality
of the matching M (the number of (sk, ui, bj) triples in the
matching). (12), (13) and (14) represent the constraints due to the
maximum capacities of spectrum, user and infrastructure, sk, ui
and bj , respectively. Here, qs and qb are as mentioned in Section 3.
qu can be considered as the maximum budget of each user, to
purchase services from the SPs.

TMSC is however, NP-hard [48]. Biro and McDermid studied
in [52], that the problem of deciding whether a stable matching
exists in an instance of the Cyclic 3DSM problem with Incomplete
lists (Cyclic 3DSMI) is NP-complete. TMSC is a generalization
of the 3DSMI problem according to [48], and hence, the same
applies to TMSC.

5.3 R-TMSC Model
As discussed above, even the process of determining whether a

stable matching exists for a TMSC model is NP-complete. Hence,

3. Here partner refers to an agent of the type of agents in x’s preference list.

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:46:57 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2947522, IEEE
Transactions on Mobile Computing

6

we consider techniques to refine the TMSC model to make it
easily solvable. Therefore, we add a few reasonable restrictions as
given below, and transform the TMSC problem into a Restricted
Three-sided Matching with Size and Cyclic preference problem
(R-TMSC) problem: (1) The preference lists of spectrums are
derived from a master preference list. This master list is the set
of all users in strict order (e.g., according to the prices offered),
and the preference lists of all spectrums are derived from this
master list, including all or just part of it; (2) The infrastructures
are indifferent with the spectrums, i.e., for each infrastructure, the
spectrums in its preference list form one tie. We refer to this mod-
el, satisfying both (1) and (2), as the R-TMSC model. This model
will be discussed and modified to be implemented in our wireless
network virtualization resource allocation problem. Finding the
maximum cardinality matching of the R-TMSC problem is still
NP-hard as proved in [48].

Taking the above mentioned restrictions into consideration, we
build the R-TMSC model for our scenario. Firstly, we construct
the preference lists for each spectrum, user and infrastructure. As
mentioned before, in the cyclic preference problem, the preference
lists of each type of agents include only one type of agents.
Therefore, the preference lists of spectrums consist of only users,
users’ preference lists contain only infrastructures, and infrastruc-
tures’ lists are comprised of only spectrums, all in the order of
preference.

The preference list of each spectrum over the users is derived
from a master list, that ranks the users according to their offer
prices, Oi, in descending order4. The users who demand higher
data rates will offer higher prices, and are more preferred by
the spectrums. All spectrums’ preference lists are derived from
the master list, and in our case, all spectrums create identical
preference lists (we assume that all users are acceptable by all
spectrums) as

PLs(k, i) = Oi, (15)

∀i ∈ {1, 2, . . . ,M}, and ∀k ∈ {1, 2, . . . ,K}.
On the other hand, the users rank the acceptable infrastructures

according to the service quality (the acceptable set is generated by
applying (9)), which is measured by SINR Γi,j

5. The SINR in turn
decides the data rates for the wireless service, and thus, the users
indirectly choose the infrastructures according to the expected data
rates. We denote the preference lists for users as

PLu(i, j) = Γi,j , (16)

∀i ∈ {1, 2, . . . ,M}, and ∀j ∈ {1, 2, . . . , N}.
According to the R-TMSC model, the infrastructures are

indifferent with the spectrums. In other words, the preference list
of any infrastructure consists of a tie, with all spectrums ranked
the same, which can be represented as

PLb(j, k) = 1, (17)

∀j ∈ {1, 2, . . . , N}, and ∀k ∈ {1, 2, . . . ,K}.

5.4 Spectrum-oriented R-TMSC

After finishing the generation of all the agents’ preference lists,
we propose our spectrum-oriented R-TMSC algorithm. Slightly

4. Here, since it is the SPs who provide services using the purchased
spectrum bands, it is basically the SPs that rank the users.

5. We assume the interference, σ2
I = 0 in building the preference lists, since

the matching actions of other users are not known in advance to any user.

different from the R-TMSC algorithm discussed in [48], we tailor
it to fit our problem setting. Before moving on to the algorithm, we
define the following sets for an instance of R-TMSC and matching
M.

A+1(M, sk) = {ui|ui �sk M(sk), ui ∈ PLs}, (18)

denotes the set of all users that spectrum sk prefers to its current
partnerM(sk).

A+1(M, ui) = {bj |bj �ui
M(ui), bj ∈ PLu}, (19)

denotes the set of all infrastructures that user ui prefers to its
current partnerM(ui).

A−1(M, sk) = {bj |bj ∈ B, sk ∈ PLb,N (M, bj) < qb},
(20)

represents the set of all infrastructures that still have capacity to
accept spectrum sk.

A−2(M, sk) = {ui|A+1(M, ui)∩A−1(M, sk) 6= ∅, ui ∈ U},
(21)

represents the set of all users, such that there exists an infras-
tructure bj that user ui prefers to its current partnerM(ui), and
infrastructure bj still has capacity to accept spectrum sk.

Also, let SLu ⊆ PLu, SLb ⊆ PLb, and SLs ⊆ PLs,
respectively, be sub-lists of agents from the preference lists.
We define Head(SLu, ui) as the elements (infrastructures) in
SLu with the highest priority. Similarly, Head(SLb, bj) and
Head(SLs, sk) represent the spectrums in SLb and users in SLs
with the highest priority, respectively.

In light of these definitions, the basic idea of the spectrum-
oriented R-TMSC algorithm is to search for the “best” triple and
add this triple to the matchingM each time, which starts from an
empty set. Each “best” triple (in the form of (ui, bj , sk)) is gener-
ated by first selecting a spectrum satisfying certain requirements,
and then this selected spectrum chooses the best user that meets its
requirements, and finally this selected user picks the most eligible
infrastructure. The detailed procedure is described in Algorithm 1.

Algorithm 1 starts with an empty matching M. U ′ =
A+1(M, sk) ∩ A−2(M, sk), as in line 7, searches for a better
triple to improve M. If the if statement in line 8 holds true,
then the lines till 21 are executed to update M. This is done
by selecting a more preferred partner (user) for spectrum sk as in
line 9, and then, selecting a more preferred partner (infrastructure)
for that user ui as in line 11. Finally, this better triple is added to
the matchingM, as shown in line 20, and this is repeated till we
obtain the best triples. This algorithm is called spectrum-oriented
R-TMSC matching, since we choose a spectrum first to begin with,
and then this spectrum chooses from its list of preferred users, and
the users in turn select their preferred infrastructures.

Theorem 1. The spectrum-oriented R-TMSC algorithm will stop
and output a stable matching after a finite number of steps.

Proof. Algorithm 1 refines a list of triples in each iteration and
proceeds by adding the best triple to an initially empty matching
M, as in line 20. The while loop goes on till the flag drops to
0. During each iteration, a user ui is assigned to a better infras-
tructure bj in its preference list. Let spectrum sk be matched to a
user, say ux, but while doing these operations, this ux =M(sk)
will be unmatched. Necessarily, ui is better than ux for sk, i.e.,
ui �sk ux. Thus, a higher priority user must be matched to a bet-
ter infrastructure, whenever a matched user becomes unmatched.
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Algorithm 1 Spectrum-oriented R-TMSC Matching
Input: U , B, S
Output:M

1: Initialization;
2: Construct the preference lists PLu, PLb, and PLs;
3: M = ∅, flag = 1;
4: while flag == 1 do
5: flag = 0;
6: for each sk ∈ S do
7: U ′ = A+1(M, sk) ∩A−2(M, sk);
8: if U ′ 6= ∅ then
9: ui = Head(U ′, sk);

10: B′ = A+1(M, ui) ∩A−1(M, sk);
11: bj = Head(B′, ui);
12: if N (M, sk) == 1 then
13: M =M\{M(sk),M(M(sk)), sk};
14: flag = 1;
15: end if
16: if N (M, ui) == 1 then
17: M =M\{ui,M(ui), ∗};
18: flag = 1;
19: end if
20: M =M∪ {ui, bj , sk};
21: end if
22: end for
23: end while
24: Output stable matchingM;

As the number of users, and the number of infrastructures in each
user’s preference list is limited, the algorithm will stop after a finite
number of steps. To prove the stability, let us suppose that the out-
put matchingM from Algorithm 1 is unstable. This implies that
there must be a blocking triple (ui, bj , sk) such that: sk ∈ PLb,
N (M, bj) < qb, bj �ui

M(ui), and ui �sk M(sk). So
ui ∈ A+1(M, sk), bj ∈ A+1(M, ui), bj ∈ A−1(M, sk), and
ui ∈ A−2(M, sk). Then A+1(M, sk) ∩ A−2(M, sk) 6= ∅ and
A+1(M, ui) ∩ A−1(M, sk) 6= ∅. The algorithm will not stop
in such a case, and hence, this is a contradiction. Therefore, the
output matchingM from Algorithm 1 is stable [48].

Theorem 2. The spectrum-oriented R-TMSC algorithm can al-
ways find a stable matching in O(K

∑
ui∈U |PLu|) iterations.

Proof. During each iteration of Algorithm 1, at least one user
will be assigned to its most preferred infrastructure, if each
infrastructure has a large capacity qb. Hence, the maximum time
required for this is decided by the total number of spectrum
bands, K, and the total number of users, M , which gives a time
complexity of O(KM). However, when qb is small, at least one
user is assigned to a better infrastructure in its preference list
during each for loop till the flag becomes 0 and the algorithm
terminates. Even in the worst case, each user is pre-matched to all
the infrastructures in its preference list, in the order of preference,
while the algorithm runs. As a result, instead of M , the lengths of
the preference lists of the users decide the maximum time required,
resulting in a time complexity equal to O(K

∑
ui∈U |PLu|),

where K
∑
ui∈U |PLu| ≤ |T | (|T | is the total number of

possible triples) [48].

Thus, when the number of entities is finite, we can see that the
proposed spectrum-oriented R-TMSC algorithm always arrives at

a stable matching in a finite number of steps, which is decided
by the number of spectrum bands and the lengths of preference
lists of the users, as proved in Theorem 1 and Theorem 2. The
obtained stable matching implies that none of the spectrum-user-
infrastructure triples have entities that prefer other partners to the
currently matched partners. This in turn implies that the spectrums
(SPs) have been matched to users according to their preferred offer
prices, and the users have been matched to infrastructures accord-
ing to their preferred QoS, in a stable manner (the infrastructures
are indifferent with the spectrums, as discussed before). This
demonstrates the existence of a feasible algorithm considering the
network slices (spectrum and infrastructure resources) as well as
the users, simultaneously, with an emphasis on the SP (spectrum)
perspective.

5.5 User-oriented R-TMSC
As in the case of spectrum-oriented R-TMSC, we define

the following sets for an instance of user-oriented R-TMSC and
matchingM.

A+1(M, ui) = {bj |bj �ui
M(ui), bj ∈ PLu}, (22)

denotes the set of all infrastructures that user ui prefers to its
current partnerM(ui).

A+1(M, bj) = {sk|sk ∈ PLb,N (M, bj) < qb}, (23)

denotes the set of all spectrums in the preference list of infrastruc-
ture bj .

A−1(M, ui) = {sk|sk ∈ S, ui ∈ PLs,N (M, sk) < qs},
(24)

represents the set of all spectrums that still have capacity to accept
user ui.

A−2(M, ui) = {bj |A+1(M, bj) ∩A−1(M, ui) 6= ∅, bj ∈ B},
(25)

represents the set of all infrastructures, such that there exists
a spectrum sk in the preference list of infrastructure bj , and
spectrum sk still has capacity to accept user ui.

The other definitions are the same as those in the case of
spectrum-oriented R-TMSC. The objective of the user-oriented
R-TMSC algorithm is also to search for the best triple and add
this triple to the matching each time, which starts from an empty
set. Each best triple (in the form of (ui, bj , sk)) is generated by
first selecting a user satisfying certain requirements, and then this
selected user chooses the best infrastructure that meets its require-
ments, and finally, this selected infrastructure picks an arbitrary
spectrum from its preference list (since we assume plausibly that
the infrastructures are indifferent with the spectrums). The detailed
procedure is as described in Algorithm 2.

Similar to the spectrum-oriented R-TMSC algorithm, Algo-
rithm 2 starts with an empty matchingM. B′ = A+1(M, ui) ∩
A−2(M, ui) as in line 7 searches for a better triple to improve
M. If this set B′ 6= ∅, then the for loop continues to updateM.
Since we prioritize the users to begin the process, it is called a
user-oriented R-TMSC matching. These users then choose from
their lists of preferred infrastructures, and the infrastructures in
turn select arbitrary spectrums from their preference lists, as they
are indifferent with spectrums in R-TMSC.

As in the case of spectrum-oriented R-TMSC, we can easily
prove the following for user-oriented R-TMSC:
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Algorithm 2 User-oriented R-TMSC Matching
Input: U , B, S
Output:M

1: Initialization;
2: Construct the preference lists PLu, PLb, and PLs;
3: M = ∅, flag = 1;
4: while flag == 1 do
5: flag = 0;
6: for each ui ∈ U do
7: B′ = A+1(M, ui) ∩A−2(M, ui);
8: if B′ 6= ∅ then
9: bj = Head(B′, ui);

10: S ′ = A+1(M, bj) ∩A−1(M, ui);
11: Select arbitrary sk from S ′;
12: if N (M, ui) == 1 then
13: M =M\{ui,M(ui),M(M(ui))};
14: flag = 1;
15: end if
16: if N (M, bj) == 1 then
17: M =M\{∗, bj ,M(bj)};
18: flag = 1;
19: end if
20: M =M∪ {ui, bj , sk};
21: end if
22: end for
23: end while
24: Output stable matchingM;

• The user-oriented R-TMSC algorithm will stop and output
a stable matching after a finite number of steps.

• The user-oriented R-TMSC algorithm can always find a
stable matching in O(M

∑
bj∈B |PLb|) iterations.

Similar to the spectrum-oriented R-TMSC algorithm, the pro-
posed user-oriented R-TMSC algorithm also always arrives at a
stable matching in a finite number of steps, which is decided by
the number of users and the lengths of preference lists of the
infrastructures. The obtained stable matching implies that the users
have been matched to infrastructures according to their preferred
QoS, and the spectrums have been matched to users according
to their preferred offer prices, in a stable manner. This presents
another feasible algorithm from the perspective of the users instead
of the SPs.

5.6 Convergence

Even though the proposed R-TMSC algorithms are distributed
approaches, once the preference lists are created, the matching
algorithm can be run offline at an entity like the wireless network
controller, and is not iterative. Also, since each entity needs to
rank only a few entities which are accessible, the preference lists
would not be too long, and the algorithm can converge [48] in
a few ms on a large-scale processor (given that the algorithm
converged for around 200 users in almost 800 ms in our small-
scale processor). However, user mobility can lead to changes in
preference lists of different entities. We can either run the three-
sided matching algorithm repeatedly, or use algorithms such as the
Roth-Vande Vate (RVV) algorithm, which can transform a random
matching into a stable matching [46], for dynamically adapting to
the changes due to user mobility in our future work.

6 PERFORMANCE EVALUATION

In this section, we evaluate the proposed spectrum-oriented
R-TMSC algorithm by comparing it with the user-oriented R-
TMSC algorithm, the decoupled allocation, as well as the random
allocation, through MATLAB simulations.

The spectrum-oriented R-TMSC algorithm operates by adding
a triple to the matching each time, while the triple is generated by
finding a qualified spectrum first, and then the best qualified user
for this spectrum, and finally the best qualified infrastructure for
this user. Similarly, the user-oriented R-TMSC operates by adding
one triple each time, but the triple is generated from one qualified
user, followed by finding the best qualified infrastructure for this
user, and a random qualified spectrum for this infrastructure. We
compare the performance of the proposed algorithms with that
of a decoupled allocation scheme, which decouples the virtual
service generation from the user service management, emulating
the traditional centralized allocation by the wireless network
controller. For simplicity, we follow the assumption that the
infrastructures are indifferent with the spectrums as considered
in the R-TMSC scheme, to form spectrum-infrastructure pairs.
These resource pairs are then matched with the users using the
Gale-Shapley algorithm, which is used to find a stable solution
for two-sided matching problems [13]. For comparison purposes,
we also consider a random allocation approach, which randomly
matches users to spectrum-infrastructure pairs.

We assume a circular cellular network with a radius of
R = 800m, consisting of M ∈ [50, 210] mobile users, N = 5
infrastructures and K = 20 spectrum bands. The bandwidth of
each spectrum band is set to be 5MHz. The capacity of each
infrastructure is 44Mbps, while the capacity of each frequency
band is 11Mbps. The minimum SINR requirements for all mobile
users are set at an identical value of 25dB. For the propagation
gain g = Cβζd−α, we set the path loss constant C as 10−2, the
multipath fading gain β as the exponential distribution with unit
mean, and the shadowing gain ζ as the log-normal distribution
with 4 dB deviation and the path loss exponent α as 4.

In Fig. 2a and Fig. 2b, the overall and average throughput
of users are evaluated. We increase the user numbers from 50
to 210 by a step size of 20. As shown in Fig. 2a, the network
throughput increases under all four schemes as more users join the
network. It is reasonable, since spectrum is reused between users
who share the same infrastructure and spectrum, which improves
the spectrum efficiency. On the other hand, Fig. 2b shows that the
average user throughput decreases as more users get matched to
the available spectrum and infrastructure resources. It is due to the
interference caused by the users who share the same resources. We
can also observe from Fig. 2a and Fig. 2b that spectrum-oriented
R-TMSC outperforms user-oriented R-TMSC slightly, and both
outperform the decoupled and random allocations.

Fig. 3 gives another insight on the system performance from
the perspective of user satisfaction. In this paper, we consider
the user satisfaction percentage as the ratio between the actual
transmission rate and the expected transmission rate. As discussed
in Section 1, users make offers to the SPs according to the
expected rates. As a result, the users who have higher rate demands
will offer higher prices, and thus, are more preferred by the
SPs and are better served by allocating resources. It is obvious
that as more users join, the user satisfaction decreases. With
more users sharing the same radio and infrastructure resources,
the interference grows, leading to a performance degradation.
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(a) Overall user throughput.
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(b) Average user throughput.

Fig. 2: User throughput analysis.
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Fig. 3: User satisfaction.

However, the spectrum-oriented algorithm still outperforms the
user-oriented one, and both demonstrate better results than the
decoupled and random allocations.

Fig. 4 compares the four methods in terms of the revenue of the
SPs. The SP revenue is calculated as the total income obtained by
providing service to matched users using the purchased spectrum
resources. Accordingly, more users, more overall revenue. We can
see that, apart from random allocation, the other three algorithms
achieve more or less the same SP revenue.

In Fig. 5, we analyze the cost-performance of the system. As
defined in Section 4, the system objective is to optimize the system
cost-performance, which is the actual transmission data rate of
each user over its offer price, averaged over all users (average data
rate/dollar). The cost-performance metric not only indicates how
good the users are performing, but also conveys the benefits earned
by the SPs. As can be seen from the figure, it decreases as more
users join. This is caused by the average user throughput decrease
as indicated in both Fig. 2b and Fig. 3. The spectrum-oriented
algorithm again proves itself to be better than the user-oriented
algorithm, and both matching algorithms beat the decoupled and
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Fig. 4: SP revenue.

random allocations.
Fig. 6 compares the run times of the four algorithms for

M ∈ [50, 210] mobile users, N = 5 infrastructures and K = 20
spectrum bands. Undoubtedly, the execution time increases as the
number of users increases. The difference in run times between
the spectrum-oriented algorithm and the other schemes also grows
with the number of users. Besides, spectrum-oriented R-TMSC
takes 100ms less than the other algorithms to finish, which is a
huge margin in the wireless communication scenario.

Fig. 7 illustrates the cardinality of the output matching on
the number of users, which indicates the number of users served.
We increase the user numbers from 50 to 450 by a step size of
20. We can observe from the figure that the spectrum-oriented R-
TMSC, user-oriented R-TMSC and the decoupled methods serve
all the users, till the number of users is almost 200. Thereafter, the
spectrum-oriented and user-oriented algorithms level off at serving
around 220 users, as the number of users increases further. This is
due to the limited spectrum and infrastructure resources available.
The decoupled allocation has a falloff after around 220 users. The
random allocation performs poorly throughout.
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Fig. 5: System cost-performance.

40 60 80 100 120 140 160 180 200 220

Number of Users

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

T
im

e 
R

eq
ui

re
d 

(s
)

Spectrum-oriented R-TMSC
User-oriented R-TMSC
Decoupled Allocation
Random Allocation

Fig. 6: Algorithm run time.

Fig. 8 shows the cardinality (number of users served) of the
spectrum-oriented R-TMSC algorithm on the number of users for
four different cases: K = 10,K = 15,K = 20 and K = 30.
N = 5 in all of these cases. It can be noticed from the figure that
all the users are served in all four cases, until the number of users
reaches a particular value. For the K = 10 case, the maximum
number of users served is 110, whereas for K = 15, it is 165,
and it is 220 for the K = 20 and K = 30 cases. Evidently, for
the given number of infrastructures (N = 5), as the number of
spectrum bands increases, more number of users can be served.

7 CONCLUSION

In this paper, we propose a matching-based framework for
resource allocation in wireless network virtualization. Utilizing a
variant of the 3DSM model, the R-TMSC model, we formulate
the relations between the radio resources, physical infrastructure
and mobile users. The proposed spectrum-oriented and user-
oriented R-TMSC algorithms are proved to always generate stable
matching results in a finite number of steps. Simulation results val-
idate the effectiveness of the proposed matching-based approaches
compared to the traditional centralized methods. The spectrum-
oriented R-TMSC algorithm enhances the user throughput and
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Fig. 7: Cardinality of output matching.
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satisfaction, as well as the system cost-performance. It also runs
faster than traditional methods, with the run time margin increas-
ing along with the number of users. Moreover, for a given amount
of resources, the proposed algorithms serve more number of users
than the traditional decoupled and random allocations.
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