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ABSTRACT The development of Long Term Evolution (LTE) enables wireless communication with high
transmission rate, low latency, and wide coverage area. These outstanding features of LTE support the next
generation of vehicle-to-everything (V2X) communication, which is named LTE-V. Among the various
technologies in LTE-V, placing relay nodes on vehicles is a promising approach to save power and energy,
and extend the transmission range. In this paper, we consider the virtual relay node selection problem.
In the problem, a base station transmits data to a vehicle relay (also known as helper) who will further
disseminate the received data to the vehicular subscribers nearby. The selection of the vehicle relay node
is a challenging issue since the utility of the selection can only be known after this action has been made.
Another challenge of this problem is that the traditional pure optimization is inapplicable due to the imperfect
information available. Motivated by the recent success of Alpha Go Zero, we employ deep reinforcement
learning (DRL) as a powerful tool for facing the above challenges and solving the problem without global
information. We build a bridge between the traffic information and decision of relay node selection based
on the reality that the utility of vehicle relay is highly correlated with the traffic density. In our work, deep
convolutional neural networks are first applied to extract traffic patterns and then learn the traffic and network
topology. Deep learning (DL) acts as a role to map features inside traffic and communication topology to
the decisions. Then Q-Learning dynamically updates the utilities of decisions by trials in the environment.
Finally, the overall rewards can be calculated to measure these decisions, and the Q function is also updated.
Simulation results based on real traffic data validate that our proposed approach can achieve high utility
performance.

INDEX TERMS Vehicle communication, LTE-V, deep learning, reinforcement learning.

I. INTRODUCTION
Nowadays, vehicular network communication is a com-
pelling technology to provide wireless connectivity among
vehicles, roadsides’ drivers, passengers, and pedestrians [1].
There exists a potentially promising market for vehicle-
to-everything (V2X) [2], yet it has not been put into
large-scale inference [3]. A lot of applications are on
their way to be implemented in vehicle-to-vehicle (V2V)
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communication scenarios, such as road safety, traffic effi-
ciency, and infotainment types with different performance
requirements [1]. Most of those applications require low
delay, high reliability, and high quality of service (QoS).
In order to meet the above service requirements, several
wireless access technologies have been conceived to provide
radio interface including cellular systems, infrared communi-
cations, traditional Wi-Fi, and IEEE 802.11p [4].

Vehicular ad hoc network (VANET) is a part of the novel
approach for intelligent transportation system (ITS) with
the aim to enhance driver’s safety, regulating traffic and
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improving the whole driving experience [5]. In real-time
traffic scenarios, VANET enables inter-vehicle, vehicle-to-
roadside, as well as inter-roadside communication. However,
IEEE 802.11p suffers from the unbounded delay problem,
scalability issue, and lack of high QoS guarantees [6]. More-
over, the transmission range is limited when it comes to huge
urban traffic scenarios. Without pervasive roadside equip-
ment, it is difficult for IEEE 802.11p to provide consecutive
and long-lived vehicle-to-infrastructure (V2I) connectivity.
The disadvantages of IEEE 802.11p demonstrated above acti-
vate the emerging development of LTE-V which is a potential
solution supporting vehicular communications [7].

LTE has a wide coverage area, high penetration rate and
also supports service of high speed. Moreover, LTE enables
high data rates and low latency, which can be beneficial to
vehicular safety. As a matter of fact, the safety problem on
the road is more and more severe nowadays. According to the
National Highway Traffic Safety Administration (NHTSA),
there were 47,420 fatal crashed in 2016 [8]. These exiting
features of LTE-V give birth to a lot of applications to resolve
the safety problem on the road. For example, cooperative
awareness message (CAM), which includes basic vehicle
data such as speed, position and accelerate speed, can be
exchanged among vehicles. There are some user cases for
CAM including emergency vehicle warning, slow vehicle
indication, intersection collision warning and so on. The
other type of messages is called decentralized environmental
notificationmessage (DENM), which includes information of
emergency electronic brake light and road-work zone warn-
ing, wrong-way driving warning, stationary vehicle accident,
traffic condition and signal violation warning, etc. Besides
those emergency-related messages, LTE-V also delivers
delay-tolerant information, such as news, entertaining shows,
weather forecast, etc. Apparently, there will be more and
more demands for new applications emerging with the devel-
opment of LTE-V technology. In the literature, there are
many works focusing on solving problems in the applications
presented above. From the crash warning point of view, in [9],
an algorithm for the pre-crash control system was proposed
to provide all-round prewarning of a potential accident. For
the use case for emergency vehicles, comprehensive design
of emergency vehicle warning system was proposed [10],
in which vehicles not only receive warning of approaching
emergency vehicle, but also are warned of detailed route
information. Adaptive cruise control (ACC) is another inter-
esting topic. Reference [11] presented design, development,
implementation, and testing of a cooperative adaptive cruise
control (CACC) system, which consists of two controllers
for managing approaching maneuver to leading vehicles and
regulating car-following, respectively. For CACC, another
work [12] proposed a reinforcement learning (RL) approach
for developing controllers for the secure longitudinal follow-
ing of a front vehicle.

Those aforementioned works considered the common use
cases in the V2X scenario and solve control problems in
a relatively small scale. However, due to the development

of traffic monitoring technique and internet-of-thing (IoT),
more data about the traffic are available. For analyzing such
a big amount of data, DL [13] is one of the promising
options. DL enables the analysis of global information to
obtain the overall picture. Nowadays, the development of DL
makes the technique of pattern recognition more powerful.
It’s natural to use the power of the DL to analyze traffic
and wireless communication patterns or topologies in order
to extract features inside traffic data. Although, DL provides
insights in data, it cannot offer decision making strategy in
control-related tasks. RL [14], on the other hand, helps agent
interact with environment and make decision based on the
supervision of the feedback (measured as rewards) with only
partial information known. DRL that combines DL and RL
can build a decision making framework, which interacts with
ever-changing and random environment. From the aspect of
urban wireless data transmission control, a big picture is
rather important since the coverage of base station will not be
limited to just a few street blocks. Also, sometimes only par-
tial information related to decisionmaking is available, which
is impossible for pure optimization. In our work, we consider
a relay scenario based on V2V communication, in which a
huge urban area is taken into consideration.

The main contributions of our work can be summarized as
follows:

1) Based on the highlighted features of LTE-V, such as
high bit rate, long range, high capacity and ubiquitous
coverage, a vehicular network topology is proposed,
which considers both traffic topology and wireless
communication topology in the V2X scenario.

2) A bridge is built between traffic topology and delay-
tolerant data allocation in V2X communications.
We design a scheme which takes traffic topology and
wireless communication topology as inputs and pro-
duces a data allocation strategy. This scheme use DL as
a function approximator to formulate mapping between
inputs and outputs. We use Python Streets4MPI tool-
box [15] to simulate and generate traffic heat maps,
and use Tensorflow as platform to implement deep Q-
learning framework.

3) There is no explicit relationship between traffic topol-
ogy and data allocation in wireless communications.
Thus, a novel double deep Q-learning approach [16]
is utilized to tackle the formulated problem. The input
to our deep Q-learning is heterogeneous data contain-
ing traffic and wireless communication information.
In order to achieve a better training result, actor and
critic networks as well as experience replay are utilized
to enhance the performance of traditional DRL.We use
cumulative rewards to measure the performance of the
deep Q-learning framework and compare it with the
performance of other baselines. We also visualize the
behavior of the deep Q-learning agent to obtain insight
of its intelligence.

The rest of this paper is organized as follows: Section II
will introduce more related works concerning the control
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and optimization in the vehicle relay scenario. Then, our
data relay model based on LTE-V is proposed in Section III,
and the problem is formulated in Section IV. Based on the
formulated problem, a novel DRL approach is introduced
to tackle the problem in Section V. In Section VI, we will
show the effectiveness of our algorithm by simulation results.
Finally, some concluding remarks are given in Section VII.

II. RELATED WORK
There exists some works focusing on the vehicular
relay in V2X networks (either vehicle-to-vehicle or
vehicle-to-infrastructure) [17]–[24]. In [18], a vehicular
relaying technique for enhanced connectivity in densely
populated urban areas was designed to investigate the per-
formance of a transmission scheme over a Long-Term
Evolution-Advanced (LTE-A) network where vehicles act as
relaying cooperating terminals session between a base station
and an end-user. Also in urban areas, [17] investigated the
impact of the greedy and selfish individual nodes on the coop-
eration dynamics in vehicular ad-hoc networks. A decentral-
ized self-organized relay selection algorithm based on game
theory was proposed in vehicular ad-hoc networks [17]. In
cooperative networks scenario, the cooperative secure trans-
missions in multiple-input signal-out (MISO) vehicular relay
networks is studied [20]. Seyfi et al. [21] investigates cooper-
ative diversity with relay selection over cascaded Rayleigh
fading channels. In [21], the authors conducted a specific
analysis on the performance of a relay selection scheme for
cooperative vehicular networks with the decode-and-forward
(DF) protocol.

From the data forwarding or packet delivering point of
view, the assistance of relay for packet delivering dramati-
cally enlarges the coverage area and saves a huge amount of
power and energy in vehicular networks. Song and Tao [19]
proposed an analytical approach based on stochastic geom-
etry to analyze the location-aware opportunistic V2V relay
scheme in terms of the transmission success probability for
a target destination vehicle and the connectivity probabil-
ity when the scheme is applied to inter-connect adjacent
RSUs. In [25], the optimal relay station (RS) selection strat-
egy for the vehicular subscriber station (SS) was studied.
By using a highway mobility model in IEEE 802.16j MR
network, Ge et al. formulated a nonlinear optimization prob-
lem and figured out the optimal locations of RSs. However,
LTE enables a much larger coverage area, which enables a
source station to communicate directly with some vehicular
relays. In [26], performance evaluation of relay vehicles was
addressed. Chai et al. formulated an optimal matching prob-
lem in a bipartite graph and solved it using the Kuhn-Munkres
(K-M) algorithm. Similarly, [27] proposed a game theory
approach to tackle the relay vehicle selection problem by
jointly considering all the relay vehicles and source vehicles.

As we can tell from the review of previous works on
vehicle relay in vehicular networks, most of the works are
formulated as a joint optimization problem, for which the
non-linear programming or game theory related algorithm

can be implemented. However, in most cases in real traffic
scenario, only partial information might be known. Mean-
while, data we obtain may only contain implicit information,
which is waiting for excavation. Deep neural networks [13]
is now a popular and powerful tool to extract features inside
data. By traffic monitoring, 2D or even higher dimension
images can be generated. Using convolutional neural net-
works (CNNs) [28] is one of the best choices to analyze the
spatial relationship between different data samples. Since the
traffic situation changes from time to time, time-correlative
data also can be obtained. In this case, recurrent neural net-
works (RNNs) can show its prowess. In [29], a special type
of RNNs, long short-term memory (LSTM) neural networks
are utilized to predict long term traffic.

Although DL is powerful in pattern recognition and predic-
tion, it cannot directly help decision making based on those
patterns it observes. That is why RL [14] comes onto the
stage. RL is a type of machine learning that creates agents
which are capable of taking actions in an environment in
order to maximize overall rewards. From the aspect of the
learning method, DL can be classified into supervised, unsu-
pervised, or semi-supervised learning. On the other hand, RL
presents a form of supervision through reward without explic-
itly tell the agent how to perform the task. DRL [30], [31],
which combines DL and RL, is nowwidely considered a tech-
nique that is close to artificial intelligence most. In the traffic
scenario, there exist some works utilizing DRL. In [32],
a safety-based control of vehicle driving is implemented by
using DRL. The continuous control is achieved to let vehicles
implement self-driving. In [33], a traffic light control system
is achieved by using DRL in traffic simulator SUMO [34].
However, different from the solving control problems in the
pure traffic scenario, our work tries to combine wireless
communication with traffic in a DRL approach.

III. SYSTEM MODEL
In this section, we introduce the system model in two subsec-
tions. In the first subsection, we introduce traffic and wireless
communication topology. The representation of the traffic sit-
uation and the virtual vehicle relay scheme is introduced. The
combination of the traffic and wireless communication topol-
ogy information is fed into the deep Q-learning framework,
which makes the input data heterogeneous. In the second
subsection, we go to the details of the communication model
we use in our virtual vehicle relay scenario.

A. TRAFFIC AND V2V COMMUNICATION TOPOLOGY
We consider both traffic topology and V2V communication
topology. We analyze the traffic topology by using the traffic
density map, which also known as the traffic heat map. In our
model, we simulate a series of traffic heat maps of a certain
district in a city. The transportation traffic simulator we used
in our work is named Streets4MPI [15], a python based soft-
ware that can simulate continuous transportation traffic heat
maps. The workflow of the transportation traffic simulation
can be briefly summarized as follows:
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FIGURE 1. Sample traffic heat maps generated by the transportation
traffic simulations at a certain timestamp on two locations as examples:
the Faroe Islands and the District of Columbia. The images in the first row
are generated by Google Map. The second row contains the
corresponding traffic heat maps generated by our transportation traffic
simulation. The density color bar only shows the relative value of density,
and for each map, the scale of the density is different (i.e., Across
different maps, a certain RGB value of a pixel may represent a different
number of vehicles around it.)

1) A street network of a real city in the world is imported
into the canvas. The file representing the structure of
the street network is an XML file named OSM XML
[35].

2) A number of drivers are initialized (this number can
be customized). For each driver, there is a correspond-
ing pre-defined [origin, goal] pair, which indicates the
location of the departure and arrival.

3) Each driver will drive his/her car along the shortest path
between the departure and arrival. While driving, each
vehicle has a speed range. Between two cars, there is a
minimum distance to avoid the collision.

4) All calculated shortest paths are then traversed and the
traffic load is recorded for each street.

5) Those recorded traffic load can be visualized and rep-
resented as pixel values on the traffic heat maps.

6) The simulation can be conducted circularly. The traffic
heat maps vary from time to time. If one driver has
finished its trip. It will start again from the departure.
Thus, the total number of vehicles on the road won’t
change after it is set up before the simulation begins.

The simulation generates one heat map at a time. We can
set the simulation interval so that a series of maps will
be generated in sequence with a fixed time interval, which
demonstrates the variation of the traffic flow over time. Those
sample maps show the traffic in a small city. However, in the

communication simulation, we will crop the map and only
use a small portion.

We assume that the cache data required by the vehicular
end users come from the roadside units, such as eNB, located
at the suburb region of the city. The distance between the
eNB and the center of our selected urban area is around 1.5 to
2 kilometers. A cache data relay scheme is considered in our
model. The eNB first distributes the cache data to a vehicle
on road, which is a mobile relay node. Then this vehicle,
also known as the helper, disseminates the cache data to
the surrounding vehicles within its capability. This kind of
transmission schemes with vehicle relay has the advantage
of saving unnecessary power consumption and solving traf-
fic scalability issue, while the scheme of distributing cache
data to each vehicle individually using cellular broadband
access [36] is more energy-consuming. This vehicle relay
scheme will be widely made used of in the future LTE-V
network. The selection of the vehicle relay node relies on
the topology of traffic, which is changing all the time. Since
we cannot control the trace of the vehicles, we come up with
a virtual relay node selection scheme. This scheme is under
the assumption that every vehicle on road can be a potential
helper by installing both transmitter and receiver on board,
which is also going to be achieved in the near future. Under
this assumption, every vehicle on the road is ready to act as a
helper. If it happens to pass by the spot where the virtual relay
node is placed, the real connection between it and the eNB at
the suburb can be built up, and the transmission begins. When
this vehicle drives off the virtual relay node, the transmission
will be handed over to the next vehicle that drives in this
node. Due to the handover problem, we gradually move the
virtual relay node from one spot to an adjacent one instead of
jumping from one spot to another faraway spot. In this paper,
we have no further consideration on the impact of handover
on the quality of transmission. After receiving the data from
eNB, the helper will disseminate the data to other vehicular
users within its opportunistic range [37], which is a term that
describes a contact opportunity between the helper and the
end user. The virtual relay node will be gradually moved to
the spot where the overall system transmission throughput
can be achieved.

Along the movement of the virtual relay node, we can draw
a trace, named virtual relay trace. This trace is not explicitly
related to the transportation traffic density since we cannot
control the movement of vehicles. However, as transportation
traffic density is one of the important factors which impact
the transmission throughput (i.e., how many potential helpers
and end users around), it will implicitly influence and lead the
virtual relay node to a better spot, and for better transmission
performance. It is not necessary for the virtual relay trace to
follow the trace of roads. If the virtual relay node is moved
off the roads, where there are no vehicles, we can hand over
the transmission to roadside units (RSUs) or unmanned aerial
vehicles (UAVs), and let them act as the helpers. If the virtual
relay trace traverses a consecutive off-road area, the trace of
virtual relay node works as an intended path for the UAVs.

102480 VOLUME 8, 2020



X. Du et al.: Virtual Relay Selection in LTE-V: DRL Approach to Heterogeneous Data

B. COMMUNICATION MODEL
For LTE-V, there are two types of messages that are sent
among vehicles, which require low latency and high relia-
bility [38]. Recall from Section I, CAM contains some basic
vehicle-related data such as speed, position and so on. On the
other hand, DENMonly works for some emergency situation,
e.g., emergency electronic brake light and road-work zone
warning.

In our model, we consider all vehicles in traffic can work as
a message relay, which is capable of disseminating received
data from eNB to nearby vehicles. We consider a contact
model that vehicles can communicate with each other only
when they move to within the transmission range [37], which
is also called communication contact. The Poisson distributed
contact rate has been observed in the real vehicular trace and
has been implemented in a lot of works, such as [39], [40],
which enables analysis for resource allocation and control
problems.

Here, we consider the problem in another way that the
traffic density and transmission capacity of helpers are two
key factors affecting the communication range. Since our
observation of the system is a static traffic map of a large
region, the demonstration of traffic status is in a more macro
way compared to a dynamic vehicle-oriented system using
some traffic simulation software such as SUMO [34]. Since
the density of every corner in the map is known in an
omnipotent view, we can denote the opportunistic contact as
Ove,u = α ·

Kve
Dxve ,yve

, where Kve is the transmission capacity of

helper ve, andDxve ,yve denotes the traffic density at coordinate
of the helper in map. α is a constant parameter satisfying
α > 0. Due to the limitation of the capacity of transmitter,
we intuitively define the communication range Ove,u in a
way that Ove,u ∝ Kve and Ove,u ∝

1
Dxve ,yve

. This definition

can be comprehended in this way: Under a certain power
constraint, the more vehicles around the helper, the commu-
nication range will be shorter, since the helper will first serve
the vehicle end users which are closer to him. The distance
between helper ve and subscriber u which connected to the
helper is denoted as dve,u. Then we have the constraint as
dve,u ≤ Ove,u.

Weconsider eNBs e located in the suburb area, transmitting
in circular coverage of star topology with radius re. The vehi-
cle which receives the data transmission (also known as the
helper) from the eNB is denoted as ve. The distance between e
and ve is denoted as de,ve . Since our work considers the loca-
tion of the eNB and the helper in a pixel level, we assign the
location of the eNB and the helper as coordinate (xe, ye) and
(xve , yve ), respectively. We assume the transmission between
the eNB and the helper has line of sight without any block
from building, trees or flying objects. And we also ignore the
height difference between the eNB and the helper, which can
be extended. Then we can denote the distance between the

eNB and helper as: de,ve =
√
(xe − xve )

2
+ (ye − yve )

2. Since

the eNB can only cover the helpers within its communication
range, we have the constraint de,ve ≤ re.
According to the Shannon theorem and in the quasi-

static scenario, the achievable rate of helper ve when asso-
ciating with transmitter e can be expressed as reve =

Bve log2

(
1+

pe,ve |h
e
ve |

2

NoBve

)
, where Bve denotes the bandwidth

allocated to helper ve, which we set to 10 MHz. pe,ve is the
transmitted power from eNB e to the receiver on ve, which
is set to 30 dBm. heve is the channel gain between helper ve
and transmitter eNB e, which is Rayleigh distributed with
the mean 1. No is the noise spectral density. The relationship
between the transmitted power pe,ve and received power at

vehicular relay pre,ve is denoted as
pre,ve
pe,ve
=

[ √
Glλ

4πde,ve

]2
.
√
Gl is

the product of the transmit and receive antenna field radiation
patterns in the line-of-sight direction, which is set to 15 dB. λ
is the wavelength of transmitted signal. For the transmission
rate between the helper and the subscriber rveu , we don’t con-
sider the path loss effect due to two reasons. First, the position
of the virtual relay node changes gradually. Thus, the distance
dve,u changes little from time to time. Second, the distance
dve,u is within several meters. For different subscribers u,
the path loss effect makes little difference. In the experiment,
we set the value of signal-to-noise ratio (SNR) from the relay
ve to the subscribers u as 40 dB.
The data transmitted from eNB e to helper ve is denoted

as me,ve , which is counted in bit. Then the time consumed
during the transmission between e and ve can be denoted
as le,ve =

me,ve
reve

. Similar to the latency between helper ve
and subscriber u, le,ve also can be seen as the latency of the
transmission between e and ve, which is a factor affecting the
quality of service.

IV. PROBLEM FORMULATION
Nowadays, the technology of monitoring real-time traffic is
really mature. The traffic can be monitored based on mov-
ing vehicles under different weather and illumination con-
ditions [41]. In the industry application, a lot of software
provide us with convenient monitoring of real-time traffic
every day. For example, when we drive on the highway,
we can check Google Map on our phone to get the latest
traffic status miles ahead of our scheduled route. Such infor-
mation not only gives us the expectation of driving experience
beforehand but also offer the potential decision for drivers
to alter their route if the current one is not satisfying. The
example above is a simple decision-making problem which
we may encounter in daily life.

The example above gives us the inspiration to build a
connection between the observation of traffic flow and con-
trol action in wireless communication. In our problem, there
are several eNBs continuously transmitting data to a certain
location. The location is represented by a certain pixel on our
traffic topology (referring to Fig. 2). The value of the pixel
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FIGURE 2. Transportation topology and communication topology. The
transportation topology is a matrix of RGB pixel cropped from a heat
map. The RGB value (a certain color) represents a certain traffic density.
The white pixel represents no traffic. For communication topology,
we build the same size of the matrix as the transportation traffic
topology. For each entry in the communication topology, the RGB value of
the corresponding pixel in the transportation topology denotes the traffic
density. All entries in the communication topology are potential virtual
relay node. The eNB selects an entry for transmission and gradually
hands over to the adjacent ones. If there is no traffic (white pixel),
the UAVs and RSUs can serve as the alternative helpers.)

stands for the traffic density at that location. This value can
be zero which means no vehicle appears in that spot at that
specific timestamp. If there is no vehicle on that spot, the relay
task cannot be accomplished, and no rewards received. Under
the assumption of volunteerism, if there exists at least one
vehicle at that spot, any vehicle there can be chosen as the
helper (relay node) by receiving the signal from the eNB and
disseminating it to nearby vehicles. The goal of our work is
to select the vehicle relay node in order to achieve the best
overall system throughput without controlling the movement
of vehicles on road. The core idea is that we generate a trace of
the virtual relay on which potential real vehicular relay can be
selected. This trace crosses through the whole map and might
not follow the direction of streets.

At a certain timestamp t , we regard the current traffic heat
map is one of our observations, which is denoted by the
matrix Straffic with n rows and n columns, and each entry
represents the RGB value. Thus, Straffic has the shape (n, n, 3).
After converted to greyscale, Straffic has a shape of (n, n, 1).
The other observation at timestamp t is the topology of the
wireless communication, which is denoted by the matrix
Scomm with n rows and n columns. For those spots containing
the vehicular relay and connected end users, we assign the
corresponding entries with 1, and otherwise with 0. Scomm
has the shape of (n, n, 1). This design helps us highlight the
current location of the vehicle relay and the end-user vehicles
which connect to it. We denote the observation at timestamp
t as st , where st = [Straffic, Scomm]. The state st has the shape
of (n, n, 2). With the observations (or states), we assume that
an agent is employed by us to accomplish the virtual relay
node selection task. In order to train the agent, we assume
that all information regarding the wireless communication
between eNBs and connected helpers, as well as helpers
and connected subscribers (e.g., distance, transmission rate,

the power consumed, the volume of delivered data, etc.) are
known to an operator. The operator acts as a supervisor to
give the feedback to the agent after anymove it accomplishes.
This supervision exists only during the training phase. After
the agent is well-trained, we can let the agent make decisions
without the instruction from the operator.

The decision of the agent relies on the observation we
describe above. By feeding the observation and location of
the virtual relay at last timestamp, the agent can decide an
action at to take at time t . The action space is denoted as
{0, 1, 2, . . . , 8}, where 0 represents ‘‘staying put’’, and other
numbers represent 8 possible directions in which the spot
of vehicle relay can move. The traffic heat maps are fed
continuously and current packets allocation topology is only
related to the last action (Current action will result in another
packets allocation topology at next timestamp).We can easily
find out that st follows a first-order Markov chain as:

P(st |s1, a1, s2, a2, . . . , st−1, at−1) = P(st |st−1, at−1). (1)

Under state st , the execution of action at will invite an
instant reward denoted as rt , which can be expressed as:

rt = βr(e,ve) · r
e
ve (t)+ βr(ve,u) ·

∑
u

rveu (t)− βl(e,ve) · le,ve (t)

−βl(ve,u) · lve,u(t)− βf (ve) · fve − βP(e) · Pe, (2)

where we define the instant reward at time t by taking the
transmission rate reve (t) and rveu (t) as revenue. The latency
le,ve (t) and lve,u(t) during transmission, the fee fve charged by
the helper for providing service, and the energy Pe consumed
by eNB e are counted as the cost. The parameter β represents
the weight assigned to each component contributing to the
reward. The larger the value of β, the more contribution it
will make to the overall reward. We set a constraint on β that
βr(e,ve) + βr(ve,u) − βl(e,ve) − βl(e,ve) − βf (ve) − βP(e) = 1,
where βr(e,ve), βr(ve,u) ≥ 0 and βl(e,ve), βl(ve,u), βf (ve), βP(e) ≤
0. Although, the reward we defined above includes het-
erogenous components, it makes sense if we treat the rev-
enue or cost that every unit of component evokes the same.
This reward can be regarded as the income of the ser-
vice provider. The weighted components in the equation
consider all factors that probably affect the reward, and at
the same time enable the adaptation to different forms of
rewards according to different demands. For example, if we
are only concerned about the transmission rate, we can set
βl(e,ve), βl(ve,u), βf (ve), βP(e) = 0. If there is no traffic at the
spot where we place the virtual relay node, it will incur a
zero reward, since reve (t) and rveu (t) will be zero in Eq. 2.
We won’t choose a specific vehicle as the helper, and control
its trajectory, since it would be much more expensive.
To summarize, the definition of the state, action and instant

reward at timestamp t can be denoted as follows:
• State: st = [Straffic, Scomm], where Straffic and Scomm
represent the matrices for traffic topology and wireless
communication topology respectively.

• Action: at = (at,0, at,1, . . . , at,8), where at,0 repre-
sents that the virtual relay node stays put. Other actions
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represent the virtual relay node to be moved towards 8
directions. Every movement crosses one pixel in trans-
portation traffic map.

• Reward: rt = βr(e,ve) · r
e
ve (t) + βr(ve,u) ·

∑
u
rveu (t) −

βl(e,ve) · le,ve (t)−βl(ve,u) · lve,u(t)−βf (ve) · fve −βP(e) ·Pe.
The instant reward rt here is a sum of weighted value
of the transmission rate, latency, service fee, and power
consumption.

Since the action in our model is to select a spot in the map
as a relay node and virtually move the node (gradually move
the spot to select another vehicle at another spot), the current
action taken under the current state will impact on the future
reward. This inspires us to consider both the current reward
and future reward. Thus, we define the long-term system
reward as

wt =
∞∑
τ=t

χ τ−t · rτ , (3)

where χ ∈ (0, 1) is a discounting rate, which yields a
bounded objective for optimization. It reflects the fact that
a current action has a weaker impact on the future reward
compared with the current reward.

Notice that both current and future reward should be taken
into consideration in our problem. The goal of our work is
converted to designing a policy π (a mapping from state to
action), denoted as π : st → at = (at,0, at,1, . . . , at,8),
to maximize the long-term reward,

V π (st ) = rt + χ · V π (st+1) = rt + wt+1, (4)

where V π (st ) is the long-term reward using policy π under
the state st .
Then, the long-term system reward maximization problem

can be formulated as,

max
π

V π (st ) ∀st , (5)

with the recursion relation:

V π (st )← rt + χ · V π (st+1). (6)

By taking the observation st as input at time t , the agent
will output a policy π that indicates which action at should
be taken. The operator will execute action at . After the action
is taken, value V π (st ) for action at under current state at
is evaluated by the operator according to (2). The reward
will be fed back to the agent, in order to let it ‘‘remember’’
the experience and react better next time when facing the
same state. The traffic and wireless communication topology
change from previous time t to current time t + 1 after the
action executed. Then the agent should take a new observation
st+1 and output a new policy, and so on so forth. The final goal
is to achieve the objective in (5).
There exist several challenges for this task listed as follows:
1) Since the goal is to optimize the overall reward by

the step-by-step control, the observation is discrete and
consecutive, i.e., the agent only knows the state of

FIGURE 3. The Pipline of the solution for the proposed virtual relay
selection problem.

the environment at timestamp t . The action taken at
timestamp t will affect the state of the environment at
time t + 1. The state of the environment cannot be
obtained beforehand. Therefore, a joint optimization
approach considering current and future states is not
feasible.

2) Only after the operator executes the action suggested by
the agent that the reward of this action is known. As we
explained, the operator knows all parameters about the
connection between the eNBs and connected helpers,
e.g., power consumption, transmission rate, latency,
and channel quality indicator. A new action taken will
change the connected helpers and also the value of
those parameters contributing to the reward. In other
words, since location information of eNB is invisible to
our agent, the agent cannot know which action has the
maximal reward by simply trying every action via the
brute-force approach. Once the action has been taken,
the operator who is responsible for collecting every
information of transmitters will know all informa-
tion including the volume of transmitted data, latency,
the power consumption of the eNB, etc. By using the
information from the operator, the expected reward can
be calculated. In short, a method of dynamic trial-and-
error should be adopted.

3) In our work, the virtual relay node moves gradually.
Firstly, the transmission between the eNB and vehi-
cle has a duration which continues for a few min-
utes or more. Secondly, the handover problem exists
that it consumes some time for one vehicle switching
link to another eNB or helper. Thus, in our model,
the virtual relay spot should move gradually, instead
of jumping from one spot to another far-off spot.
In our model, the virtual relay node is controlled like
a robot moving around the city. Under this assumption,
the action will have a long-term effect on the reward
in the future. Thus, the impact of current action on the
future rewards should be considered.

To overcome the obstacles we mentioned above, we are
going to propose a novel DRL method in Section V to maxi-
mize the long-term reward with implicit and partial informa-
tion is provided.

VOLUME 8, 2020 102483



X. Du et al.: Virtual Relay Selection in LTE-V: DRL Approach to Heterogeneous Data

V. DEEP Q-LEARNING
RL is known as a sequential decision-making technique,
which solves control problems in many fields. However,
traditional RL is rather unstable during training. In addition,
the observation of the environment is complex for some tra-
ditional agents, such as shallow-layer neural networks. With
the development of novel algorithms, computation ability of
a computer, availability of big data, DL can provide a much
better comprehension of the environment. Thus, DRL com-
bines DL and RL, which makes good use of this outstanding
property of DL and achieves good performance in robotics,
game playing, and spoken dialogue system. Deep Q-Learning
is one of the most popular types of DRL. The details of how it
works will be introduced in the following several subsections.
In Section V-A, we introduce how we obtain our training data
and the method for data preprocessing. In Section V-B, some
concepts of Q-learning is introduced. Combining DL and
Q-learning, the technique of deepQ-networks is introduced in
Section V-C, and actor-critic Q-networks scheme is described
in Section V-D. Finally, in Section V-E, we explain the explo-
ration policy of the deep Q-networks (DQNs) agent.

A. DATA PREPARATION AND PREPROCESSING
The traffic simulator used in our work is named
Streets4MPI [15], which is a software that can simulate sim-
ple street traffic patterns based on street maps imported from
OpenStreetMap [35]. It is written in Python and supports
parallel computation. OpenStreetMap provides street maps
from the countries all around world. We can set some param-
eters in the simulator to obtain different simulation results.
We can load different street map by changing the parameter
‘‘osm file’’. The parameter ‘‘number of residents’’ can be set
to assign the total number of trips calculated in one simulation
round. We also can set ‘‘max simulation steps’’ to change
how many times the simulation execute. One simulation step
will output one static traffic heat map for the current time.
Thus, we can attain a series of traffic heat maps representing
traffic topologies from time to time. After we get the traffic
map, we first downsize it to make it only contain the content
we need. Then, we convert the RGB traffic map to greyscale
and improve the contrast of the image, which reduces
the amount of computation and also improves the training
speed.

We use a matrix to represent the wireless communication
topology. The size of the matrix is the same as the traffic map.
The spots of the helper and its surrounding connected vehicles
will be annotated with 1. Other spots are annotated with 0.
We first normalize the pixel value of traffic maps from 0 to 1.
Then the normalized traffic topology (traffic heat maps) will
be stacked with wireless communication topology (sparse
matrix), which serves as the input to the first convolutional
layer (shown in Fig. 4). Note that the traffic topology comes
from the real traffic simulation brought by Streets4MPI. The
communication topology is the result of the virtual relay
selection at the previous time stamp.

FIGURE 4. Deep Q-learning procedure for the proposed virtual relay
selection problem.

B. Q-LEARNING
We utilize a category of model-free reinforcement learning
algorithms named Q-Learning. Compared with the value
iteration in Section IV, Q-Learning will evaluate Q-Values,
which is a state-action values that explicitly tell agent how to
react to the observation. Q∗(s, a) is denoted as the expected
sum of discounted long-term rewards when the agent takes
action a under state s. The iteration function of Q-Learning
can be denoted as:

Qk+1(s, a)← (1− η)Qk (s, a)+ η(r + χ ·max
a′

Qk (s′, a′)),

(7)

where η is the learning rate. r is the instant reward agent
can obtain when it leaves state s with action a. After s and
a, the agent would continuously act optimally with discount
rate χ .
There are a few techniques for solving the Q-Learning

problem. If the states space and action space are limited and
discrete, we can utilize a tabular method, which generates a
matrix called the Q-Table. The entry of the Q-Table at row i
and column j represents the Q-Value Q(si, aj) for taking the
jth action aj under the ith state si. At each iteration, the value
for one entry of the Q-Table will be updated. After enough
iterations, every Q-Value in the Q-Table will become the
optimal value.

However, the tabular approach can only solve the
Q-Learning problem with finite state and action space. The
state space in the real world is almost infinite and table cannot
represent all the states. Thus, neural networks are introduced
to be used as a function approximator, which maps the states
to the Q-Values corresponding to certain actions.

C. DEEP Q-NETWORKS
As we have introduced in Section V-B, the traditional
Q-learning uses the table based method to update the long-
term reward for action under a certain state. However,
the table method cannot scale, which means it cannot handle
the situation where the number of states is nearly infinitely
large. To tackle this problem, deep Q-Networks (DQN)
replaces the table as a new approach to obtain the approxima-
tion of Q-Values. Deep Q-Networks can take high-dimension
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features as input. In our problem, the input is a concatenated
2D image, which contains traffic and V2V communication
topology. Both the traffic topology (traffic density map)
and wireless communication topology (data allocation map)
evolve over time. The traffic topology evolves independently,
which obeys the rule of the physical model of the traffic. The
data allocation map at the current time step is determined by
the action agent takes at the previous timestamp and the traffic
density around the current location of the virtual relay node.
After the input layer, we stack several convolutional layers
followed by several fully connected layers (totally 4 layers) as
the structure of our deep Q-networks, which is demonstrated
in Fig. 4. For every convolutional layer, the computation can
be denoted as:

zi,j,k = bk +
fh∑
u=1

fw∑
v=1

fn′∑
k ′=1

xi′,j′,k ′ · wu,v,k ′,k , (8)

where i′ = u · sh + fh − 1 and j′ = v · sw + fw − 1. zi,j,k is the
output of the neuron located in row i, column j in feature map
k of the convolutional layer (layer l). sh and sw are the vertical
and horizontal strides, respectively, fh and fw are the height
and width of the field, respectively, and fn′ is the number of
feature maps in the previous layer. xi′,j′,k ′ is the output of the
neuron located in layer l − 1, row i′, column j′, feature map
k ′ (or channel k ′ if the previous layer is the input layer). bk is
the bias term for feature map k (in layer l). You can think of
it as a knob that tweaks the overall brightness of the feature
map k . wu,v,k ′,k is the connection weight between any neuron
in feature map k of the layer l and its input located at row u,
column v (relative to the neuron’s receptive field), and feature
map k ′.

From one layer to another layer, including both convolu-
tional layer and fully-connected in our DQN model, we uti-
lize Rectified Linear Units [42] as the activation function.
In short, we denote z as the output, and x ′ as the input of the
next layer. Then we have the relationship as x ′ = max(z, 0).
Generally, convolutional layers will help extract features

from images and reduce the dimension of the data. The output
of the last convolutional layers, which is a 2D array, should
be converted to a vector and serve as the input of stacked
fully-connected layers. The fully-connected layers will select
the features from high dimension data. The output of the
last fully-connected layer is a vector, which demonstrates the
predicted Q-Value for each corresponding action.

D. DOUBLE DQNs AND COST FUNCTION
We use two DQNs with the same architecture, but different
trainable parameters, i.e., θ and θ ′, respectively. One DQN
(the actor) will be used to drive the movement of the relay
node, and the other DQN (the critic) will watch the actor’s
trials and learn from its mistakes. The critic, which is also
known as the target Q-Network, will compute the loss for
every action actor takes during training. The reason for using
a separate DQN to generate the target Q-value is that the
value of Q-Network will shift at every training step [16].

Algorithm 1 Deep Double Q-Learning Algorithm
1: Initialize:

• experience replay memory,
• training interval and copy interval, Tint and Tcop,
• boolean variable flag to indicate whether the game
ends or not,

• the actor network with parameter θactor ,
• the critic network with parameter θcritic = θactor .

2: for training steps n = 1, 2, . . . ,N do
3: Preprocess the initial observation s0 to get beginning

input x0 for neural network.
4: for game episode t = 1, 2, . . . ,T do
5: Generate a random probability p.
6: if p ≤ ε then
7: randomly select an action at ,
8: else
9: at = argmaxaQ(x, a, θactor ).
10: end if
11: Execute action at , get reward rt , next observation

st+1 and flag as feedback.
12: Preprocess st+1 to get next state xt+1.
13: Store (xt , at , rt , xt+1,flag) into experience replay

memory.
14: if n mod Tint 6= 0 then
15: continue.
16: end if
17: Get a batch size of Mbatch samples

(x(i), a(i), r (i), x(i+1),flag) from experience replay
memory.

18: Calculate target Q-Value, y(i) = r (i) + χ ·

max
a′

Q(x ′(i), a′, θactor ).

19: Update the critic network by minimizing the cost
function J (θcritic),

J (θcritic)= 1
Mbatch

Mbatch∑
i=1

(y(i)−Q(x(i),a(i),θcritic))
2,

and perform the gradient descent method on
J (θcritic) with respect to θcritic.

20: if n mod Tcop = 0 then
21: θactor = θcritic.
22: end if
23: end for
24: end for

Using only one network usually incurs uncontrolled esti-
mation of value. Based on the feedback loop structure of
reinforcement learning, the network will become more and
more unstable.

At regular and frequent intervals [43], the trainable vari-
ables in the critic network will be completely copied to the
actor network. The updated actor network will start to take
actions again, and critic will watch and learn from a new
cognition level. This double Q-network structure is shown
in Fig. 5.
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FIGURE 5. Double Q-network structure.

In order to let critic learn, all experience the actor
obtains during playing will be stored into a container called
experience replay memory. Every unit in the experience
replay memory can be described as list of the current state st
at time t , the action at taken under the current observation st ,
the next observation st+1 and reward rt for taking at under st .
Suppose the critic will fetch several units at once from replay
memory for training. The number of units fetched at one time
is called the batch size, which is denoted as Mbatch. The cost
function used for training is

J (θcritic) =
1

Mbatch

Mbatch∑
i=1

(y(i) − Q(s(i), a(i), θcritic))
2
,

with y(i) = r (i) + χ ·max
a′

Q(s′(i), a′, θactor ), (9)

where θcritic and θactor are the parameters for the critic
network and actor network. s(i), a(i), r (i) and s′(i) are the
current state, action, reward and next state of the ith mem-
ory sampled from the experience replay memory, respec-
tively. Q(s′(i), a′, θactor ) is the prediction of Q-Value actor
expects from the next state s′(i) if actor chooses action a′.
Q(s(i), a(i), θcritic) is the prediction of Q-Value of the ith mem-
ory from the expectation of critic network. yi is the target
Q-Value for the ith memory. J (θcritic) is a cost function, which
is based on mean squared error. By using mean squared
error, we can easily derive the gradient, which saves the
computational resources. On the other hand, we don’t have
outliers in the data set. The RGB value of the traffic heat
map is normalized (the value falls in (0,1)), and the value
function is a continuous function of the input data. So there
are no outliers in the data set, which is the main problem
that we should consider when we use the mean squared error.
As we can see in (9), how the critic is trained depends on the
experience which actor learns.

The training procedure for deep double Q-learning is
shown in Algorithm 1. Before the training start, we first
initialize the trainable parameters for the actor and critic
networks, and the intervals for copying the critic’s parameters
to the actor’s parameters. Also, experience replay memory
is initialized to store the experience from the playing of the

actor. In Algorithm 1, we set two loops of iterations. The
outer loop is for training iterations. The index for counting
training steps will increase by one for every time training
occurs. The inner loop is for game iterations. For example,
if we calculate the cumulative rewards every time after the
virtual relay node moves 100 steps, the 100 steps of the
virtual relay nodemovement are one game iteration. By doing
so, we can periodically record the performance of the DRL
agent. In every training step, DRL agent will move the virtual
vehicle relay node T times to finish one complete game.
In every game iteration, the deep Q-networks will update its
parameters in the way that cost function is minimized.

E. EXPLORATION POLICIES
When the actor is making movement in the environment,
it faces a dilemma of balancing exploration and exploita-
tion of the environment. Exploitation means that the actor
should choose the action based on the best policy it currently
knows. On the other hand, exploration means that the actor
should explore more about the environment in order to gather
more information. In other words, the best long-term strategy
may involve short-term sacrifices. In order to gather enough
information to make the best overall decisions, we intuitively
expect the actor to explore the environment as thoroughly as
possible. From theMDP point of view, if every state and every
transition can be visited enough times, we can expect a better
performance from the training, since we remember enough
situations in replay memory. However, to achieve that, it will
be time-consuming if we let the actor select actions by its
own judgment every time since it might have preferences. It’s
the same as people who visit one restaurant many times, they
know what are their favorite dishes and they tend to order
their preferences more than dishes they are not familiar with.

It might take a long time for the actor to go through every
state and transition. For simplicity, we utilize a technique
called ε-greedy to artificially add interference. At each step,
the actor will acts randomly with probability ε, or greedily
(choose the optimal action) with probability 1 − ε. During
training, we will gradually reduce the value of ε to let the
actor explore the environment more at the beginning and less
when it already knows plenty of good policies.

VI. SIMULATION RESULTS AND DISCUSSIONS
In this section, we evaluate the performance of our scheme by
using Google TensorFlow platform. We implement the deep
double Q-learning framework for our proposed model and
implement other two schemes as baselines. One is the random
action scheme and the other is the greedy action scheme.
In the random action scheme, the action at every step is cho-
sen randomly. In the greedy action scheme, the agent decides
to move the virtual relay node to the one of the adjacent
pixels which has the maximum traffic density (pixel value
is the largest). In Section VI-A, we set up parameters in the
simulation. In SectionVI-B, we demonstrate some simulation
results and analyze the performance of our proposed model.
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TABLE 1. Hyperparameters of the DQNs.

A. SIMULATION SETTINGS
In this simulation, we consider the traffic density map, whose
size is 100 × 100. The original coordinate (0, 0) locates
at upper left of the traffic map. We set x axis along the
vertical direction and y axis along the horizontal direction.
The location of eNB is at coordinate (−10,−10). The eNB
transmits data to the helper, whose coordinate can be at any of
those 10, 000 coordinates. Each pixel of the map represents
a squared area with the size 10 meters × 10 meters. The
whole squared training field has the size 1000 meters ×
1000 meters. In the simulation, we select an initial coordinate
for the helper, and let it move gradually.We set the bandwidth
of the transmission as 10 MHz for eNB to the helper and the
helper to end users. The transmission power for the eNB to
the helper and the helper to the end users are set to 30 dBm.
For the transmission from the helper to the subscribers, we set
the SNR to a fixed value as 40 dB. For every unit of data
received by end user, we give 100 units of revenue. For every
unit of power consumed for both eNB and the helper, we give
it 1 unit of cost. For every unit of latency of the service,
we give it 1 unit of cost. In this way, we unify the units of
different components, and let the reward function Eq. 2 make
sense. Every component in the reward function shares the
same value for weight β in our experiments. The final reward
is calculated by the revenue minus the cost.

For the structure of the proposed DQNs, we stack 3 con-
volutional layers followed by 1 fully-connected layer. The
detailed configuration of the DQNs structure are shown
in Table 1. The actor and critic Q-network have the same
structure. The training occurs after actor takes action every
time, which means total training steps are equal to total
action steps. The size of experience replay memory is set to
5,000. The size of the minibatch is 10, and thus 10 samples
will be randomly fetched from experience replay memory
for every training step. All the trainable variables in critic
networks will be copied to actor networks every 10 training
steps. The discount rate χ is set to 0.95. The value ε is set
to 0.95 at the beginning of training. With the iterations of
training increasing, ε will decay until it reaches minimum
value 0.05. 100 different traffic density maps will be fed into
our model iteratively. We define every 100 steps as one game.

B. SIMULATION RESULTS
In Fig. 6, we compare the cumulative rewards gained by
our deep double Q-network (DDQN) with the greedy and
random action scheme. As we can find out from the result,

FIGURE 6. The number of action steps (training steps) versus cumulative
rewards.

during the beginning 2,000 steps, the cumulative rewards
gained by DDQN are almost the same with the random
action approach. After that, the rewards gained by DDQN
increase exponentially until it reaches 5,000 steps. From step
5,000 to step 15,000, the rewards gained by the agent take
another exponential growth. After step 15,000, the rewards
grow linearly until step 25,000. On the contrary, the ran-
dom action approach gains little overall rewards compared
to DDQN during the whole training process. For the greedy
action scheme, it performs better than DDQN during the first
5,000 steps at beginning, and achieves an early advantage.
From step 5,000 to step 10,000, the greedy action scheme
accumulates approximately the same amount of rewards as
the DDQN. After this period, DDQN has a larger growth rate
than the greedy action scheme, and the greedy action scheme
cannot catch up with the DDQN anymore. From this result,
we demonstrate that the rewards in this scenario not only
depend on the traffic density at a single pixel on the traffic
density map, but also on the surrounding traffic patterns. The
convolution operation in the neural networks works due to the
consideration of the relationship between the adjacent pixels
(potential location for virtual relay).

In Fig. 7, we evaluate the average rewards over iterations.
The average rewards are calculated as the cumulative rewards
divided by the current number of steps. By doing so, we bur-
nish the cumulative rewards curves by removing variance of
rewards from step to step. The average rewards curve of the
random action approach is mostly flat, which indicates no
growth in rewards harvesting from step to step. On the other

VOLUME 8, 2020 102487



X. Du et al.: Virtual Relay Selection in LTE-V: DRL Approach to Heterogeneous Data

FIGURE 7. The number of action steps (training steps) versus average
rewards.

FIGURE 8. The number of game iterations versus rewards collected in
one game.

hand, we observe that at the first 2,000 steps, the average
reward of the greedy action scheme is big, and after that,
it drops fast and converge at around 5,000 step. The curve for
DDQN is flat and has a slight growth afterward. After around
15,000 steps, all curves converge and DDQN has the biggest
average reward.

In Fig. 8, we collect rewards gained in every game, which
contains consecutive 100 iterations. Since we implement
the algorithm for 30,000 iterations, we have the rewards
of 300 games counted. We find out some peaks and val-
leys between 100 game iterations and 250 game iterations,
which corresponds to action steps (or training steps) from
step 10,000 to 25,000. Compared with Fig. 6, we find out
that these spikes correspond to the sudden rewards growth
after a small period of saturation. We observe that the val-
ues of rewards in valleys during this period are almost
the same with the rewards of the random action approach.
After those valleys, some peaks can be observed, which indi-
cates that DDQN learns how to deal with those circumstances
and recover from those adversities. Compared with DDQN,
the greedy action and random action scheme have smaller
variance from game to game, which indicates that there is no

FIGURE 9. The number of training iterations versus mean square error.

such learning moments happen compared with DDQN as we
have discussed.

In Fig. 9, we evaluate the mean squared error (MSE) of
our DDQN model, which measures the squared value of the
difference between the predicted Q-value and target Q-value.
At the very beginning, the MSE is high, but drops dramat-
ically and remains at a low level after the step 2,000. This
curve demonstrates that the agent went through a studying
period during the first 2,000 steps. Afterward, it handles the
problem well and produces an accurate prediction of the
Q-value. In order to show the result clearly, we zoom in to
the first 100 steps and last 100 steps of the training, which is
shown by the pink curves. Themaximum andminimummean
squared error of the whole training process are 33.12 and
1.22e-16, respectively.

According to the demonstration of the figures we have
discussed, there is a period at beginning of the training (the
first 2,000 steps). After this period, the agent reduces errors
and collects positive rewards. The behavior of the agent is
represented in Fig. 10. We sample 6 traffic maps of the time
stamps during that period. We can clearly observe in those
traffic maps that there are some eye-catching patterns in the
maps. At each pixels, the brighter the color is, the higher
traffic density is. At step 5,000, the coordinate of the helper
(relay point, which is a red dot in the map) is at (38, 25) when
the agent stays in an area where there exists heavy traffic.
From step 12,000 to 14,000, we discover that the virtual relay
node hangs around the left corner of the map, which let it
continuously and linearly collect rewards, which we can refer
to the Fig.6. From step 22,000 to step 28,000, the virtual relay
node gradually moves to the right bottom area, where the
traffic density is low. Referring to Fig. 8, we also observe
some negative rewards collected during this period accord-
ingly. From Fig. 10, we demonstrate the behavior of the
virtual relay node, and the relationship between the behavior
and the numeric training results we have discussed and shown
in previous figures.
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FIGURE 10. The location change of the virtual relay node through training
steps. The red dot represents the vehicle relay with the brown annotation
of its coordinate. The green and blue patterns in the traffic maps
represent relatively high traffic density. The purple or black patterns
represent relatively low traffic density.

The above results show the training performance of the
DDQN agent in a 100 × 100 sized field. For validation,
we also let the agent select virtual relay node in a squared
field with side length 100, however with 4 different traffic
maps (thus different states or inputs). Considering the starting
point of the virtual relay might affect the performance of the
agent, we generate 4 traffic maps which are different with the
training field. The testing process goes through 100 steps for
each testing traffic topologies.

In Fig. 11, we evaluate the cumulated reward through test-
ing steps. We select 4 different traffic topologies in order to
diminish the performance difference caused by the variation
of traffic condition. We should consider the agent scheme to
be robust if the agent is going tomake wise decision nomatter
what traffic topology it deals with. In the left column of the
figure, we can see the 4 subgraphs showing the 4 different
traffic topologies we used for testing. On each traffic graph,
we annotate the starting and ending spot of the virtual relay
node. In the right column of the figure, 4 subgraphs shows the
corresponding cumulated rewards collected through testing
steps. We can observe from the results that DDQN scheme

FIGURE 11. The visualization of the testing fields and corresponding
cumulated rewards through testing steps. The subgraphs in the left
column show the 4 different testing fields on which we implement our
testing. The subgraphs in the right column show the corresponding
cumulated rewards through 100 testing steps.

has much better performance than the greedy and random
scheme. In Fig. 11(a), (c) and (g), we can see that the position
of the virtual relay node goes through a significant change.
Along these movements, the cumulated rewards gain some
huge leaps, which demonstrate the intelligence the agent
gained. In Fig. 11(e), we can see that the position of the virtual
relay node barely changes. From Fig. 11(f), we observe that
the agent considers that the sweet spot is around the starting
point. A relatively constant growth of cumulated rewards is
obtained by all of the three schemes. However, the DDQN
scheme has larger gradient than the other two schemes.

In Fig. 12, we compare the cumulative transmission rate
through 100 testing steps by three different schemes. There
are a few saturation found in the curves, which means
no transportation traffic found at that step, or in other
words, no transmission connection built. From the result,
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FIGURE 12. The number of validation iterations versus cumulative
transmission rate from eNB to the vehicle relay.

FIGURE 13. The number of validation iterations versus signal-to-noise
ratio at the vehicle relay.

we observe that the greedy scheme has an edge over the
other two schemes at early steps. With the validation going
on, the DDQN scheme catches up and surpasses the greedy
scheme, which shows that the proposed DDQN scheme is
more powerful harvesting the opportunity of transmission
connection in the long term.

In Fig. 13, we use the signal-to-noise ratio (SNR) in log10
at the vehicle relay as the channel quality indicator. There are
a few zero values on the x-axis representing no signal received
at the vehicle relay instead of SNR = 1.We compare the result
of the three schemes. The random scheme has an unsteady
and discontinuous transmission. It loses the connection for a
long period in the middle. The greedy scheme has a steady
and continuous connection with a concentrated distribution
of the SNR. The DDQN scheme is able to find better spots
in order to achieve better SNR with the validation going on.
The average value of the SNR from DDQN scheme is also
higher than the greedy and random scheme.

In Fig. 14, we use bar plot to demonstrate the relative
number of the connected end users which are served by
the helper. This relative value is calculated based on the
opportunistic contact Ove,u defined in Section III-B, which
shows the transmission coverage of the helper. We have three

FIGURE 14. The number of validation iterations versus the relative
number of the connected end users.

findings from this result: 1) Our proposed DDQN scheme and
the greedy scheme have more steady transmission coverage
than the random scheme. 2) By using the greedy scheme,
we can ensure the transmission connection to some extent.
However, the average coverage of the end users is smaller
than the DDQN scheme. 3) Generally, once the DDQN
scheme builds a connection, it covers more vehicles than the
greedy and random scheme.

The analysis above demonstrates that the agent in our
model has achieved intriguing intelligence. DRL makes it
possible to let agent make wise decisions and overcome
obstacles in the environment. From the aspect of vehicle
relay, our proposed model helps select location for the vir-
tual vehicle relay with only traffic information. Moreover,
by utilizing our scheme, the optimized action can be chosen
for setting the position of vehicle relay at the current time
without knowing the traffic condition in the future. The long-
term maximum utilities can be obtained and corresponding
trajectory of the virtual vehicle relay node can be produced
by the agent in the proposed model. In this work, we only
consider one vehicle relay scenario. From MDP point of
view, if we consider n relays, every relay has 9 actions, then
the size of the action space becomes 9n. The state space in
our problem is generally infinite since the distribution of the
traffic changes continuously. The more action taken basically
means more state encountered.

VII. CONCLUSION
In this paper, we proposed a deep reinforcement learning
framework in the LTE-V scenario for virtually selecting vehi-
cle relay node. In the framework, we use deep Q-networks
as our agent, which contains two types of networks. Firstly,
we use deep convolutional neural networks to extract traffic
patterns in the input. Then, fully-connected networks are
utilized to flatten the high dimensional data and map to
the Q-values as output. Q-learning is used to obtain the
target Q-values by interacting with the environment. The
target Q-values can be used as the labels for training deep
Q-networks. Deep Q-networks agent will move the vir-
tual vehicle relay node gradually on the traffic map.
Every movement will arise rewards, the amount of which
depends on the next observation.We train our agent by letting
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it interact with environment iteratively and learn from trials
and errors. Simulation results show that agent has an excellent
performance in rewards collection and error correction. Com-
pared with the greedy and random decision-making schemes,
our agent is able to improve utility performance dramatically.
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