
1706 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

Network Function Virtualization Resource Allocation
Based on Joint Benders Decomposition and ADMM

Ye Yu , Student Member, IEEE, Xiangyuan Bu , Kai Yang , Member, IEEE, Hung Khanh Nguyen,
and Zhu Han, Fellow, IEEE

Abstract—Network function virtualization (NFV) has emerged
as a new technology to reduce the cost of hardware deployment. It
is an architecture that using virtualized functions run on the virtual
machine to achieve services instead of using specific hardware.
Although NFV brings more opportunities to enhance the flexibility
and efficiency of the network, resource allocation problems should
be well taken into consideration. In this paper, we investigate the
virtual network function (VNF) resource allocation problem to
minimize the network operation cost for different services. Both
setting the VNF instances for each virtual machine and allocating
the traffic volume in the network are considered. The problem is
formulated as a mixed integer programming problem. Although
it can be solved in a centralized fashion which requires a cen-
tral controller to collect information from all virtual machines,
it is not practical for large-scale networks. Thus, we propose a
distributed iteration algorithm to achieve the optimal solution.
The proposed algorithm framework is developed based on the
joint Benders decomposition and alternating direction method of
multipliers (ADMM), which allows us to deal with integer variables
and decompose the original problem into multiple subproblems
for each virtual machine. Furthermore, we describe the detail
implementation of our algorithm to run on a computer cluster
using the Hadoop MapReduce software framework. Finally, the
simulation results indicate the effectiveness of the algorithm.

Index Terms—Network function virtualization, resource
allocation, Benders decomposition, alternating direction method
of multipliers, Hadoop, MapReduce.

I. INTRODUCTION

N ETWORK function virtualization (NFV) is a currently
popular topic among the research issues of industry and

academia. In the past, the function of the network is achieved by
the middleboxes or hardware appliances, such as firewall, prox-
ies, load balancers, and so on [1]. NFV provides an opportunity

Manuscript received December 25, 2018; revised June 2, 2019 and October
15, 2019; accepted December 4, 2019. Date of publication December 12, 2019;
date of current version February 12, 2020. This work was supported by the
National Natural Science Foundation of China under Grant 61771054 and Grant
61501028 and in part by the US MURI AFOSR MURI 18RT0073, NSF EARS-
1839818, CNS1717454, CNS-1731424, CNS-1702850, and CNS-1646607. The
review of this article was coordinated by Prof. R. Jantti. (Corresponding author:
Kai Yang.)

Y. Yu, X. Bu, and K. Yang are with the School of Information and Electronics,
Beijing Institute of Technology, Beijing 100081, China (e-mail: yuye@bit.edu.
cn; bxy@bit.edu.cn; yangkai@ieee.org).

H. K. Nguyen is with the Department of Electrical and Computer Engineering,
University of Houston, Houston, TX 77004 USA (e-mail: hknguyen9@uh.edu).

Z. Han is with the University of Houston, Houston, TX 77004 USA, and
also with the Department of Computer Science and Engineering, Kyung Hee
University, Seoul 446-701, South Korea (e-mail: zhan2@uh.edu).

Digital Object Identifier 10.1109/TVT.2019.2959347

to reduce costs of implementing expensive hardware and flexi-
bility for the network service, which means the instances of vir-
tualization network functions (VNFs) can be created, migrated
and released in any circumstances. The most significant power
consumptions in the NFV are capital expenditures (CAPEX) and
operating expenditures (OPEX) [2]. NFV is achieved on Virtual
Machines (VMs) that are located in databases. Computation,
storage, and network resources are required for the implemen-
tation of VNFs. The operators can provide specific service by
composing service function chain (SFC) using VNFs. However,
the SFC should meet the users’ requirement considering both
the QoS parameters and the cost.

NFV operation is supported by network functions virtualiza-
tion infrastructure (NFVI), which is composed of hardware and
software to enable the physical and virtual layer of the network.
Each VNF needs to be associated to a specific VM. Creation and
operation of VNFs are dominated by the management and or-
chestration (MANO). Meanwhile, software-defined networking
(SDN) is integrated with NFV in the architecture [3]. The benefit
of introducing SDN is separating the control and data plane by
programming. This will bring flexibility to the network, and
the forwarding rules can be easily implemented by the SDN
controller. The SDN-NFV architecture is a trend, and many
organizations have proposed standards and related research [4].

NFV has been a promising technology in the vehicular net-
work, especially in efficient traffic management, road safety, and
entertainment. In the next generation network, vehicle appli-
cations will require ultra-reliable low-latency communications.
Many NFV frameworks are proposed for serving vehicular net-
work so far. Enabling NFV on top of vehicles will provide mobile
service providers an easier access to the emerging paradigms.
Currently, vehicle-to-everything (V2X) communication is a hot
topic in the vehicle communication system. The SDN-NFV
architecture has many merits, along with V2X. For example, it
will be easier to acquire dynamic data traffic routing for vehicles
with high mobility. In other words, the waiting time of traffic
light control or congestion can be significantly reduced. Be-
cause the virtual machines are virtualized and migrated among
vehicles, the specific vehicle can remain its operating area by
exchanging the information involves computation, storage, sens-
ing, communication resources, and environmental conditions.
With timely service based on NFV, the accident rescue will
be more efficient with rapid emergency response. In addition,
using NFV technique can reduce fuel consumption and carbon
emissions with optimized on-road strategy. In short, introducing

0018-9545 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3783-0684
https://orcid.org/0000-0001-9092-487X
https://orcid.org/0000-0003-1059-0705
mailto:yuye@bit.edu.cn
mailto:bxy@bit.edu.cn
mailto:yangkai@ieee.org
mailto:hknguyen9@uh.edu
mailto:zhan2@uh.edu

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1707

NFV in vehicle communication network can provide advanced
services to the end users on the road, and it can improve the QoS
of the current traffic techniques.

Although NFV has many promising advantages, there are
some problems which cannot be ignored. The resource allocation
problem with SFC is an intractable issue in operating virtualiza-
tion networks. VMs are virtualized on the physical machine,
and they need to be appropriately assigned. Furthermore, the
resources for the network are limited, which need to give an op-
timal decision on allocating power, bandwidth, etc. [5], [6]. In the
general cases, the global optimal solution is difficult to obtain.
This is due to the formulated problems often are mixed-integer
nonlinear problems. It is hard to solve such NP-hard problems,
not mentioning the influence of the network scale [7]. Thus, the
heuristic algorithm is often proposed, e.g., in [8] and [9].

In the service requests, some are related to the distributed
resources. NFV has a distributed nature because the virtual-
ization of the network is unrestricted from the position of the
physical machines [10]. Many distributed algorithms are intro-
duced to this area, such as game theory, alternating direction
method of multipliers (ADMM), and the other decomposition
algorithms [1]. The distributed architecture makes full utilization
of the resource in the networks.

The resource allocation problem for NFV is studied by many
papers. However, the global optimal solution is difficult to
obtain in many cases, considering a large number of constraints
and the large-scale of the network which will bring computing
ability issues to the central controller. Furthermore, the proposed
algorithms may have many constraints, which are not generally
suitable for certain other cases. These challenges motivate us
to propose a general method to acquire the global optimal
solution for the NFV resource allocation. For the scale problem
of the network, it is highly desirable to solve the problem in a
distributed fashion to make full use of the resource allocated to
VMs. In this way, the computation task for the controller can
be reduced significantly, as well as the execution time for the
network.

In this paper, we consider the NFV resource allocation prob-
lem, including the VNF placement problem and traffic manage-
ment problem. We aim to minimize the costs of implementing
VNFs and operating traffic in NFV networks. The problem
is formulated as a mixed integer linear programming (MILP)
problem, and it is solved in a distributed manner by joint Benders
decomposition and ADMM. We also describe the implemen-
tation details of our algorithm using the Hadoop MapReduce
software framework. The simulation results verify the merits
and properties of our algorithm.

Our main contributions are summarized as follows:
� We formulate the resource allocation problem in an NFV

network as a mixed integer linear problem, which aims to
minimize the system cost. Both VNF placement and traffic
management problems are considered.

� We first propose an algorithm based on joint Benders
decomposition and ADMM. The algorithm can be applied
to mixed integer problems and solve it in a distributed man-
ner as a general framework. The Benders decomposition
can separate the integer variables apart with continuous

TABLE I
LIST OF NOTATIONS

variables. For the subproblem, a large-scale of continu-
ous variables can be handled in a distributed way using
ADMM. In this paper, we solve the VNF placement prob-
lem in the outer loop of the algorithm. For the traffic
management problem with continuous variables, we use
ADMM to solve it distributedly.

� We evaluate the performance of our proposed algorithm
in the simulation section. The implementation of our algo-
rithm in the Hadoop MapReduce is described in detail. The
results indicate that our algorithm is efficient for large-scale
mixed integer problems and the computation complexity
is significantly reduced.

The rest of the paper is organized as follows. In Section II,
the related work is surveyed. The NFV system model and the
resource allocation problem are presented in the Section III.
Then, the algorithm based on joint Benders decomposition and
ADMM is the proposed in Section IV. Section V describes the
implementation of the proposed algorithm using the Hadoop
MapReduce. The simulation results are shown in Section VI-A,
and conclusions are stated in Section VII. The list of notations
of this paper is given in Table I.

II. RELATED WORK

NFV is a new network architecture, as shown in Fig. 1,
proposed by the industry for the software-driven network [9].

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1708 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

Fig. 1. The NFV network architecture.

The up to date developments and challenges of NFV is surveyed
in [11]. In [12], a new model for enhancing virtual machine
applications performance is proposed. In [13], the authors pro-
pose an architecture involving both mobile edge computing
(MEC) and NFV, which enables joint managing applications
and virtual network functions. The NFV compound effect of
the system is evaluated. An adaptive memory load manage-
ment scheme for the server running on the virtual machine in
the cloud data center is proposed in [14], which can prevent
the memory overload. In [15], the authors jointly minimize the
power consumption considering servers and switches, which
generates the optimal VNFs placement. In [16], the authors
modeled the VNF allocation problem by queuing system with
constraints and solve the Markov decision process to find the
optimal policy. In [17], a new dynamic resource pooling and
trading mechanism in network virtualization are proposed and
solved by the Stackelberg game. Most of the literature solved
the problems using heuristic methods which cannot guarantee
the global optimal.

Nowadays, NFV/SDN architecture is popular for its flexi-
bility. In [18], the software-defined and network virtualization
networking is surveyed, as well as the SDN applied on Ope-
nADN in a multi-cloud environment. The SDN-NFV mobile
networks are modeled in [19] to minimize equipment failure
risks as well as fast recovery of network nodes after a disaster
happens. A service function chaining embedding problem for
SDN-NFV is presented in [20], which is solved by splitting
the traffic to several VNFs in the service chain. In [21], the
authors introduce SDN and NFV including service chains. SFC
is introduced in the NFV, which connects several services and
enables a single network to achieve many services. Clustered
NFV service chaining is adopted to obtain the optimal number of
clusters in [22], which can minimize the end-to-end service time
in MEC RANs. The function chains can be customized which is
stated in [23]. Vehicles are playing a major role in the distributed
mobile scenario. In [24], the authors propose an intelligent VNFs
selection strategy in Vehicular Cloud Network (VCN), which
utilizes deep neural network (DNN) and Multi-Grained Cascade
Forest (gcForest) to distinguish service behaviors. In [25], the
authors elaborate the potential use of the NFV service for the
heterogeneous vehicles with many benefits. In [26], the author
propose a theoretical framework to evaluate the performance of
a Long-Term Evolution (LTE) virtualized mobility management
entity (vMME) hosted in a data center. In [27], the authors

discuss the new trends of applying NFV in 5G network to
manage the wireless/mobile broadband (5G WMB).

Distributed solutions become more and more important since
the networks become denser and denser [28]–[30]. There are
plenty of algorithms have been taken into consideration in the
distributed applications. In [31], distributed algorithms for big
data applications are introduced. Game theory is widely used in
resource allocation of distributed networks. In [32], the authors
analyze the congestion mitigation problem in NFV for both
centralized and distributed methods using game theory. A Stack-
elberg game is adopted as the approach to solve the resource
management problem in LTE unlicensed in [33]. In [34], a hierar-
chical game approach is presented for generating optimal strate-
gies of visible light communication and D2D heterogeneous
network in a distributed manner. Benders decomposition is first
proposed in [35] and it is well studied by many researchers. In
[35], Benders decomposition is introduced in details. The market
risk management problem is modeled as a stochastic linear
complementarity problem in [36], and Benders decomposition
is adapted to this equilibrium models. Benders decomposition is
suitable for solving mixed integer programming. In [37], a joint
base station (BS) association and power control algorithm is pro-
posed based on Benders decomposition. The size and schedule in
microgrids operation are studied using Benders decomposition
in [38]. However, most of the papers only provide centralized
solutions for the mixed integer programming. In addition to
game theory and Benders decomposition, ADMM is another
powerful decomposition tool. ADMM is useful for breaking
convex optimization problems into small parts to achieve dis-
tributed methods, which is elaborated in [39]. In [40], the revenue
maximization problem for mobile data offloading in SDN is
handled by ADMM. Multi-block ADMM is surveyed in [41]
for big data optimization problems in the smart grid. In [42], the
authors investigate resource allocation in network virtualization
using ADMM in both parallel and distributed fashions. The
optimal large-scale scheduling of microgrids using ADMM is
proposed in [43].

Although much research has been done in literature, our
work is distinctive. For solving the mixed-integer programming
problem which is often formulated in the NFV resource alloca-
tion, we propose a novel algorithm framework. The framework
is composed of Benders decomposition and ADMM. Benders
decomposition is designed for decomposing the continuous and
integer problem. ADMM is introduced to give a distributed
solution for the continuous problem. Both sub-algorithms take
advantage of dual information. By adopting the proposed frame-
work, large-scale mixed-integer programming problems can be
solved in a distributed manner. As an alternative to the other ex-
isting heuristic algorithms studied in the literature, our algorithm
has the remarkable performance, effectiveness, and universality.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a virtualization network with N VMs and L
links, as shown in Fig. 2. In this paper, we assume that the
VMs are already placed on certain physical machines, and the

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1709

Fig. 2. The model of the network.

input and output nodes are fixed. The VM placement problem
can be solved similarly, which is beyond the scope of this
paper. Each VM has the capacity to achieve a series of VNFs;
however, the capacity is limited. For the nth VM, the capacity
is presented as Cn. Moreover, each VNF can be implemented
in different VMs at the same time, considering utilizing the
resources flexibly. We denote that the VNF set for the network is
F = {f1, . . . , fI}, and the VNF set for each VM is a subset ofF .
We also assume that each VM can only process one VNF at the
same time. The SDN controller and the NFV MANO are the
main central processors, and they have different functions.
The SDN controller determines the logic of the traffic and passes
the status information to the NFV MANO. The NFV MANO can
be divided into three part: the orchestrator, VNFs managers, and
virtualized infrastructure managers. The placement of the VNF
and the optimization of the traffic path are accomplished by the
NFV MANO.

Service function chain (SFC) is defined as a set of VNFs in a
certain order to achieve different services. We assume M SFCs
are required to traverse through the network, and the VNF set for
the mth SFC is expressed asFm = {fm

1 , . . . , fm
K |fm

k ∈ F}. In
addition, each VNF requests a data rate requirement, denoting
as Rk. During each SFC period, the network resource allocation
orchestration is invariant. For each VNF, the input and output
data rates may change because of the specific processing. Thus,
we denote the input-output ratio of fk as μfk .

The existence of VNF fm
k for the nth VM is defined as a

binary variable, which can be denote as

δmn,k =

{
1, if fm

k is implemented on VM n,

0, otherwise.
(1)

For the data flow of the SFC, there may have many paths for one
VNF to another. We define the number of the instances of fm

k is
emk , and it can be calculated as

emk =
N∑

n=1

δmn,k. (2)

In other words, emk is a variable depending on δmn,k. For the kth

VNF of the mth SFC, we define vmn,k as the traffic volume.

B. Problem Formulation

Our main interest is to minimize the cost of the power
consumption for the network by VNF placement and resource
allocation. In this paper, we consider the cost can be divided
into two part. One is VNF placement and the other is traffic
expenditure. We assume that the data flow for each virtual link
is lossless. In the previous work of other papers, the power
consumption for implementing VNFs have been pointed out. We
assume that the cost for each VNF is various, and it is denoted as
ξmk for implementing one instance of fm

k in the kth SFC. Thus,
the total cost for VNF placement is formulated as

Qp =

K∑
k=1

emk ξmk , (3)

Another cost is produced by the traffic for each VNF, and
different types of VNF have different cost coefficients, denoting
as γk for the kth VNF. We assume that the cost is depend linearly
on the traffic volume of VNF. Thus, the cost can be formulated
as

Qt =
K∑
k=1

γk

N∑
n=1

δmn,kv
m
n,k. (4)

Therefore, the total cost function is

Qtotal = Qp +Qt. (5)

From above, we can formulate the problem as

min
δm(l)vm,(l)

Qtotal (6)

s.t 1 ≤
N∑

n=1

δmn,k ≤ N ∀k,m, (7)

K∑
k=1

δmn,kv
m
n,kφk ≤ Cn ∀n,m, (8)

N∑
n=1

vmn,k ≥ Rk ∀k, (9)

μfk ≤
∑N

n=1 v
m
n,k+1∑N

n=1 v
m
n,k

∀k, (10)

δmn,k ∈ {0, 1} ∀m,n, k. (11)

Here, (7) indicates that all the VNF in the SFC should exist in
the network; however, it should not be implemented on every
VM. (8) is the constraint for the VM’s capacity for holding
the VNF set, and φk is the resource cost for the unit traffic of
VNF. (9) is the constraint for the requested traffic of each VNF.
(10) indicates the previous VNF output cannot exceed the latter
VNF’s traffic volume. Finally, (11) is the binary constraint.

Although this problem can be solved in a centralized manner,
the computation task for the controller is arduous as an NP-hard
problem. The controller must deal with the same sized integer
variables and continuous variables. Thus, the decentralized al-
gorithm is necessary. In the following section, we propose an
algorithm based on joint Benders decomposition and ADMM

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1710 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

to solve the problem in a distributed manner to release the
computational burden of the controller.

IV. ALGORITHM BASED ON BENDERS

DECOMPOSITION AND ADMM

In this section, we propose the joint Benders decomposition
and ADMM based on the former content. Benders decomposi-
tion is popular for separating the mixed integer programming
into continuous subproblems and discrete master problem. For
the continuous subproblems, we use ADMM to decouple the
constraints with associating all variables to generate a distributed
solution, which is necessary in the NFV network. However,
ADMM is known for solving convex problems distributedly. If
the convexity of the problem cannot be satisfied, the convergence
and optimal solution are unreliable. Naturally, we use Benders
decomposition as the outer loop and use ADMM as the inner
loop to solve the subproblem. In the following, we introduce
Benders decomposition and ADMM respectively, and show how
to integrate them into an algorithm framework. The analysis and
implementation are also presented.

A. Benders Decomposition

The problem we formulated is a MILP problem. To solve
the problem, we need to deal with the integer variable first.
Benders decomposition is an efficient technique for dealing
with complicating variables (e.g., integer variables). We treat
the Benders decomposition algorithm as the outer loop for our
algorithm.

The principle of the Benders decomposition algorithm is
separating the continuous variable and integer variable and
handling them individually. There are two kinds of problems in
the algorithm, which are the master problem and the subproblem.
The master problem aims to solve the pure integer programming
problem or a small scale mixed integer programming problem.
The subproblem is to solve problems only with continuous
variables. Benders decomposition is an iteration algorithm. First
is the initialization of the problem. Next, the subproblem is
solved by involving only continuous variables, because the
integer variables are fixed. Through solving the subproblem,
the continuous variables solution and the dual variable solution
associated with the constraints of fixing the integer variables’
value are obtained. After that, the upper and lower bounds are
generated using the solutions from solving the subproblem. The
difference between the upper and lower bounds is used for the
stopping criterion in the iterations. Then, the master problem is
solved. The whole procedure of the algorithm to solve the NFV
resource allocation problem is stated as follows.

Initialization: Actually, the initialization is generated from
the trivial solution of the master problem. First we assign loop
counter l to 1. In our problem formulation δmn,k is a binary
variable and Uδmn,k

= 1 (upper bound) and Lδmn,k
= 0 (lower

bound). Because the coefficient of the corresponding part in the
objective function is positive, we simply assign δ

m,(l)
n,k = Lδmn,k

.
Furthermore, we introduce a function α as an optimal value of
the subproblem. The initial value of α(l) is set as αdown, which
should be determined by the certain circumstances.

Subproblem: The subproblem is constructed by fixing the
value of complicating variables to avoid them. Thus, the sub-
problem can be expressed as the problem (12). θm,(l)

n,k is the dual
variable for the constraints that fixing the binary variables’ value.
The subproblem is deduced to a problem with only continuous
variables and it is often solved in a distributed manner.

min
vm

Qt (12)

s.t
K∑
k=1

δmn,kv
m
n,kφk ≤ Cn ∀n,m, (13)

N∑
n=1

vmn,k ≥ Rk ∀k, (14)

μfk ≤
∑N

n=1 v
m
n,k+1∑N

n=1 v
m
n,k

∀k, (15)

δmn,k = δ
m,(l)
n,k : θ

m,(l)
n,k ∀m,n, k. (16)

In this paper, we adopt ADMM to solve the subproblem which
is illustrated in the next section. By solving the subproblem, we
can acquire vm(l) and θm,(l) for the following steps.

Convergence checking: The convergence checking is signif-
icant for the algorithm because it performs as the stopping
criterion. The upper bound for the primal problem is calculated
as

Ql
up = Ql

total(δ
m,(l)vm,(l)). (17)

Correspondingly, the lower bound can be generated by

Ql
down = Ql

p(δ
m,(l)) + α(l). (18)

Thus, the stopping criterion is given by{
Ql

up −Ql
down ≤ ε, stop,

otherwise, continue,
(19)

where ε is a pre-defined tolerance for the problem. Once the
iteration stops, the optimal solution is obtained as δm,(l) and
vm,(l).

Master problem: The master problem is only related to the
binary variables. After update the loop counter l = l + 1, the
problem which need to solve is stated as follows

min
δmα

Qp + α (20)

s.t 1 ≤
N∑

n=1

δmn,k ≤ N ∀k,m, (21)

Qt

(
vm,(j)

)
+ θm,(j)

(
δm − δm,(j)

)
≤ α

j = 1, . . . , l − 1, (22)

K∑
k=1

δmn,kv
m
n,kφk ≤ Cn ∀n,m, (23)

α ≥ αdown, (24)

δmn,k ∈ {0, 1} ∀m,n, k, (25)

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1711

Algorithm 1: NFV Resource Allocation Based on Benders
Decomposition.

1: Initialize: loop index l, Uδmn,k
, Lδmn,k

, α(l)

2: while Ql
up −Ql

down ≥ ε do
3: Subproblem
4: acquire vm(l) and θm,(l) using ADMM
5: Bounds calculation
6: calculate upper and lower bound (Ql

up and
Ql

down)
7: by (17) and (18)
8: Master problem
9: step 1: update loop index l = l + 1

10: step 2: add new Benders cut to the problem (20)
11: step 3: solve the problem in (20) to obtain the
12: optimal value of δm and α
13: end while

where the constraint (22) is the Benders cuts associated with the
former iterations. In every iteration, the new benders cut will
be added to the constraints of the master problem. The Benders
cuts compose l − 1 hyperplanes to approximate the objective
function of the subproblem from below.

After the master problem is solved, the algorithm goes to the
next iteration with solving the subproblem. The whole procedure
of the algorithm is presented in the Algorithm 1.

B. ADMM

For our designed continuous subproblem, ADMM is the most
suitable algorithm. For example, dual decomposition is an effi-
cient way to generate a distributed solution. However, it cannot
deal with the constraints coupling with different users. OCD
(Optimal Condition Decomposition) is another popular method
in distributed computing. Unfortunately, our problem cannot
satisfy the strong convexity condition (linear programming),
which will cause convergence problem. Many other distributed
computing methods have strict requirements which are inappro-
priate for our subproblem. Thus, we adopt ADMM for solving
the subproblem in a distributed manner. ADMM is a method to
solve the problem by decoupling the constraints and breaking it
into many small problems. For the problem with a general form
stated as follows

min f(x) + g(z)

s.t. Ax+Bz = c. (26)

The optimization problem has variablesx and z with the equality
constraint. The augmented Lagrangian function for the problem
is expressed as

L(x, z, λ) = f(x) + g(z) + λT (Ax+Bz − c)

+
ρ

2
‖Ax+Bz − c‖2. (27)

The Lagrangian multiplier is denoting as λ and ρ is the
penalty parameter. The ADMM iterations proceed as follows

sequentially

x[t+ 1] := argmin
x
L(x, z[t], λ[t]), (28)

z[t+ 1] := argmin
z
L(x[t+ 1], z, λ[t]), (29)

λ[t+ 1] := λ[t] + ρ (Ax[t+ 1] +Bz[t+ 1]− c) . (30)

The iterations stop when a stopping criterion meets.
For the proposed subproblem, we need to transform problem

(12)–(16) into an equivalent problem. Among the constraints of
the problem, we can find that (14) and (15) are constraints that
involve all the VMs. To generate a distributed algorithm, we
introduce an auxiliary variable as

vmn,k = um
n,k ∀n, k, (31)

where um
n,k is a copy of the vmn,k. Thus, the constraints in (9) and

(10) can be reformulated as
N∑

n=1

um
n,k ≥ Rk ∀k, (32)

μfk

N∑
n=1

um
n,k −

N∑
n=1

um
n,k+1 ≤ 0 ∀k. (33)

Thus, the equivalent problem is formulated as

min
vm

Qt (34)

s.t
K∑
k=1

δmn,kv
m
n,kφk ≤ Cn ∀n,m, (35)

N∑
n=1

um
n,k ≥ Rk ∀k, (36)

μfk

N∑
n=1

um
n,k −

N∑
n=1

um
n,k+1 ≤ 0 ∀k (37)

δmn,k = δ
m,(l)
n,k : θ

m,(l)
n,k ∀m,n, k (38)

vmn,k = um
n,k ∀n, k. (39)

The augmented Lagrangian function of the problem is given
by

Lρ = Qt +
N∑

n=1

K∑
k=1

λn,k

(
vmn,k − um

n,k

)

+
ρ

2

K∑
k=1

N∑
n=1

‖vmn,k − um
n,k‖2

2, (40)

where λn is the Lagrangian multiplier and ρ > 0 is the penalty
parameter. For the tth iteration, the primal and dual variables
update as follow

u[t+ 1] = argminLρ(u,v[t],λ[t]), (41)

v[t+ 1] = argminLρ(u[t + 1],v,λ[t]), (42)

λ[t+ 1] = λ[t] + ρ(u[t+ 1]− v[t+ 1]). (43)

Thus, the variables can update sequentially in iterations.

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1712 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

From the formulation of the problem, we can compress and
separate the problem for simplicity. We deem that the variable
um
n,k is a global copy of vmn,k, which means that it is handled by

the controller. The problem for updating um
n,k is given by

min
um,(l)

N∑
n=1

K∑
k=1

−λn,ku
m
n,k +

ρ

2

N∑
n=1

K∑
k=1

‖ṽmn,k − um
n,k‖2

2

s.t
N∑

n=1

um
n,k ≥ Rk ∀k,

μfk

N∑
n=1

um
n,k −

N∑
n=1

um
n,k+1 ≤ 0 ∀k, (44)

where ṽmn,k is a constant passed by the former iteration. For vmn,k,
it is considered as the local variable for every VM. Therefore,
the problem for each VM of updating vmn,k is given by

min
vm,(l)

K∑
k=1

γkv
m
n,k +

K∑
k=1

λn,k +
ρ

2

K∑
k=1

‖vmn,k − ũm
n,k‖2

2

s.t
K∑
k=1

δmn,kv
m
n,kφk ≤ Cn ∀m. (45)

In addition, the dual variable λn,k is updated at each VM simply
as

λn,k[t+ 1] = λn,k[t] + ρ(ũm
n,k − ṽmn,k) ∀n, k,m. (46)

Therefore, the whole procedure of ADMM is described in
Algorithm 2.

C. Analysis

The outer loop is based on Benders decomposition, which is
responsible for dealing with binary variables. The convergence
of the Benders decomposition is guaranteed if the α is a convex
function of δm. Thus, the theorem is proposed as follows.

Theorem 1: α is a convex function of δm, which ensures the
outer loop convergence.

The proof of Theorem 1 is illustrated in Appendix. The
subproblem is designed as an inner loop iteration based on
ADMM. The convergence of the ADMM is illustrated in the
following Remark 1.

Remark 1: For solving a convex optimization problem,
ADMM guarantees to convergence [39]. For the formulated
problem, the objective function of the subproblem is closed,
proper and convex. Moreover, the constraints are linear, and the
strong duality holds for such linear programming. Thus, ADMM
for our problem can converge definitely.

Benders decomposition reduces the complexity of solving
the original MILP by decomposing the problem into a series
of independent smaller subproblems [44]. In each iteration,
the Benders cuts eliminate feasible regions without optimal
solution [45]. For ADMM adopted in subproblem, it will return
ε-optimal solution within O(1/ε2) iterations [46].

The large-scale continuous variables are decoupled for each
VM. Although our algorithm is not in a fully distributed manner,

Algorithm 2: Distributed Algorithm for the Subproblem
Based on ADMM.

1: Initialize: t, λ, v
2: while the stopping criterion is not satisfied do
3: Controller update
4: repeat
5: wait
6: until receive updated λ, v from all N distributed

VMs
7: step 1: Solve the problem in (44) and obtain the
8: optimal solution ũ
9: step 2: Then, send ũ to the VMs

10: step 3: Update t = t + 1
11:
12: Each VM updates
13: repeat
14: wait
15: until receive updated ũ from the controller
16: step 1: Solve the problem in (45) and obtain the
17: optimal solution ṽ
18: step 2: Update dual variables:
19: λ[t+ 1] = λ[t] + ρ(ũ[t+ 1]− ṽ[t+ 1])
20: step 3: Send the updated ṽ and λ[t+ 1] back to

the
21: controller for the next iteration
22: end while

there are still many benefits. Firstly, each VM node can update
variables without information exchange with other VM nodes
which will reduce the cost of signaling. Then, the heavy tasks are
allocated to the central controller, which can take full advantage
of the calculation ability of the network. It is possible that the
subproblem sometimes encounters infeasibility. The method to
handle the infeasibility is adding artificial variables, which is
explained in [35] in details. However, the cost for this method is
introducing a more substantial number of variables which will
increase the problem complexity.

D. Algorithm Implementation

The whole procedure of the algorithm is depicted in Fig. 3.
Benders decomposition is famous for separating the mixed-
integer problems into continuous and discrete problems. ADMM
is widely used for decouple the complicated constraints and
give a distributed solution. Both of the algorithms are iterative
algorithms. Moreover, ADMM is introduced to solve only the
subproblem of the Benders decomposition. Thus, the continu-
ous subproblem should have variables coupled constraints for
ADMM. The stopping criterions need to be chosen properly
according to [47] and [48]. If the threshold is picked too small,
it may cost too much time for ADMM to converge. However,
if the threshold value is too large, the rough solution may
cause the divergence of the algorithm. For the subproblem, the
optimization task is done by both controller and VMs using
ADMM. The controller is responsible for updating the global
copy variable denoting as u and sending them to VMs after the

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1713

Fig. 3. The illustration of the Benders decomposition algorithm procedure and the information exchange in subproblem using ADMM.

calculation. Each VM updates its own variables including the
traffic variable and dual variable. Then, they send their updating
results back to the controller for the next iteration. This proce-
dure is repeated until convergence. Note that, the subproblem
is decoupled and VMs can solve the optimization problem by
themselves without knowing information from other VMs. The
bounds updating is calculated at the controller. For the master
problem, the controller solve a small scale MILP comparing to
the original MILP. After each iteration, more Benders cuts will
be added to the problem to cut the feasible region and make
it smaller and smaller. When the difference between the upper
and lower bounds calculated at the controller is smaller than
a certain threshold, the optimal resource allocation strategy is
obtained. In the vehicular network, the high dynamic scenarios
require the mobility of the system. If the system need to be oper-
ated at different positions or scenarios, the proposed algorithm
framework is still feasible for the most of the cases. Difference
of the parameters will not affect the feasibility of the designed
architecture. The proposed architecture of NFV is well fitted
in the vehicular network. As the service condition is changing,
the controller can make efficient computation strategy for the
network with this architecture.

V. IMPLEMENTATION USING HADOOP MAPREDUCE

In this section, we introduce an overview of MapReduce
programming model and describe the detailed implementation
of ADMM-based Benders decomposition in Algorithm 1 using
the Hadoop MapReduce framework.

A. MapReduce Programming Model

MapReduce is a programming model for distributed process-
ing of extensive datasets using a large cluster of commodity
machines [49]. It has been widely used to perform special-
purpose computations both in industry and academia [50]. A

MapReduce computation consists of a set of Map tasks and Re-
duce tasks. The input data will be split into independent blocks
and processed by the Map tasks in a completely parallel manner
to produce a set of intermediate key-value pairs. Then, all outputs
of the mapping operation that share the same intermediate key
will be grouped and passed to the same Reducer. Generally, the
Map and Reduce steps can be conceptually expressed as [49]

map (k1, v1) −→ list(k2, v2)

reduce (k2, list(v2)) −→ list(v3).

Apache Hadoop is an open-source software framework writ-
ten in Java for easily writing the application to process the
massive amount of data on computer clusters in reliable, fault-
tolerant manner [51]. The core of Hadoop consists of a stor-
age part, which provides the Hadoop Distributed File System
(HDFS) architecture, and a processing part which implements
the MapReduce computation paradigm. The HDFS manages the
storage of data across an entire cluster of machines by splitting
files into blocks and distributing them amongst the nodes in
the cluster [52]. Then, the data at each node is divided into the
fixed-size piece called splits. Each split of data is processed in the
Map tasks based on the user-defined Map function to produce a
list of key-value pairs. The process of sorting key-value pairs of
map tasks and sending them to reducers is handling internally by
Hadoop. This allows Hadoop to reduce many complexities such
as data partitioning, scheduling tasks across many machines,
handling machine failures and performing inter-machine com-
munication [53].

B. Implementation Using Hadoop MapReduce

Each iteration of ADMM in Algorithm 2 can be represented
as a MapReduce job as illustrated in Fig. 4. The distributed
computations for each VM’s subproblems in (45) are per-
formed by Map tasks, and the central controller subproblem

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1714 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

Fig. 4. Data sharing for iterative ADMM using Hadoop MapReduce and the detailed illustration of Map tasks and Reduce task in each MapReduce job in each
iteration.

computation in (44) and master problem in (20) are performed
by a Reduce task. We have total N Mappers, one for each VM’s
subproblem. Each Mapper solves the optimization problem in
(44) to obtain vvvn. However, solving the problem in (45) for
vvvn[t+ 1] on iteration t+ 1 needs to useuuun[t] andλλλn[t] from the
previous iteration. Since MapReduce is not designed to support
iterative applications, we facilitate iterative computation for the
Joint Bender decomposition and ADMM in Algorithm 1 by
writing the output data at each iteration to the HDFS, which
will be used as the input data for Mappers in the next iteration.
Particularly, each Mapper uses vm_ID provided by Hadoop to
identify which islanded problem is and loads the corresponding
λλλn[t],uuun[t], δδδ[t] from HDFS in the previous iteration.

After solving the optimization problem, each Mapper updates
values for λλλn using (46). Then, each Mapper emits an inter-
mediate key-value pair, which is 〈1, {vvvn,λλλn}〉 to the Reducer.
Since in our problem, there is a single Reducer, which plays
the role of performing the central controller subproblem and
master problem, all the keys in all Map tasks are selected as 1
to force all information from the Mappers is sent to a unique
Reducer. Based on all information received from the Mappers,
the Reducer solves (44) to obtain {uuun}∀n. Then, the Reducer
checks if Algorithm 2 is converged, it calculates the upper bound,
lower bound, and solves the master optimization problem in (20).

The values of {uuun}∀i,λλλ, δδδ are written out to HDFS directly by
the Reducer, which will be used as the input data for MapReduce
job in the next iteration. The detailed Map tasks and Reduce
task in each iteration is illustrated in Fig. 4. The pseudo-
code for implementing the Joint Benders decomposition and
ADMM Algorithm 1 using Hadoop MapReduce is described in
Algorithm 3.

In order to implement our algorithm using Hadoop MapRe-
duce, we set up a cluster with 4 computers. Each computer has
an Intel Core2 Quad CPU Q8200, a 4 GB memory, and a 64-bit
ubuntu 16.04 OS. In our Java code, we use Gurobi solver to solve
the problems in both Mappers and Reducers. The running time
is shown in Fig. 5. We run over 100 times and take the average
result. From the figure, we can notice that the running time tends

Algorithm 3: ADMM-Based Bender Decomposition Using
Hadoop MapReduce.

1: function MAP(vm_ID, inputData)
2: Load data of previous iteration from HDFS
3: corresponding to vm_ID
4: Solve subproblem corresponding to each VM in

(45)
5: Update λλλn using (46)
6: EMIT 〈1, {vvvn,λλλn}〉
7: end Function
8:
9: function REDUCE(key, Data from Mappers)

10: Concatenate {vvvn,λλλn} from all VMs
11: Solve controller subproblem in (44) for uuu
12: if Algorithm 2 is converged then
13: Calculate Upper bound and Lower bound as in

(17)
14: and (18)
15: Sove master problem in (20)
16: Update δδδ
17: end if
18: EMIT 〈{uuu,δδδ}〉
19: end Function
20:
21: function MAIN(inputPath, outputPath)
22: Initialization
23: while Ql

up −Ql
down ≥ ε do

24: run MapReduceJob (inputPath, outputPath)
25: t← t+ 1
26: end while
27: end Function

to increase with the increase of the number of VM. However, the
increasing rate is slow. This is because the major time is caused
by write/read data from HDFS and subproblems on different
Mappers. If the problem size keeps increasing, the cluster will
cost more time to converge. The results show that our algorithm

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1715

Fig. 5. The running time on the cluster.

TABLE II
PARAMETERS FOR VNFS

can be implemented on Hadoop MapReduce, which will benefit
us for processing data when the incoming data amount is large.

VI. SIMULATION RESULTS

In this section, we present the simulation results to evaluate
the effectiveness of our proposed algorithm. For the service
function chain, we assume that the function number K = 5,
which are randomly picked among firewall, proxy, network ad-
dress translation (NAT) and intrusion detection systems (IDSs),
and so on. The corresponding function parameter is stated in
Table II, similar to the set up in [9]. The data rate for the service
chaining is chosen from the set as {6 8 10 12 14} MB/s according
to a Zipf distribution [54]. For our evaluation, we consider a
fully connected network. We set the number of VMs N as 10.
For every VM, the capacity is set as a uniformly distributed
random number from 1 to 10 [9]. Resources for every VM
(CPU, Memory, Disk) are assumed as the same kind of resource.
The lower bound αdown for α is initialized as a small enough
number, according to [35]. We assume that each VNF can at
least processed by one VM. All the simulation results are run
in MATLAB R2016b. All optimization problems are solved by
using CVX. Although the simulation is far from considering all
cases in practical networking, the results can give an overview
of the effectiveness of our proposed algorithm.

A. Convergence

Fig. 7 and Fig. 6 show the convergence of the proposed
algorithms. Fig. 7 presents the average convergence performance

Fig. 6. The convergence performance of Benders decomposition.

Fig. 7. The convergence performance of ADMM.

of ADMM for solving the subproblem. To verify the conver-
gence, we deploy both centralized and distributed algorithms.
The centralized algorithm is deemed as a baseline, which is
optimizing subproblem without decomposition. As shown in the
figure, the distributed algorithm converges to the same optimal
value as the centralized algorithm within several iterations.

In Fig. 6, the average convergence of Benders decomposition
is presented. From the figure, we can see that after 3 outer loop
iterations, the algorithm converges. The difference between the
upper bound and lower bound is decreasing, and then finally
converges. One thing needs to be noticed is that the upper
bound does not need to be monotonous, but the lower bound
is monotonously increasing with the iterations all the time [35].

B. Computational Performance

In Fig. 8, it demonstrates that the relationship between the
average execution time and the number of VMs. When the
number of VMs is increasing from 10 to 80, the average master
problem execution time is increasing. This is due to the fact that

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1716 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

Fig. 8. The average execution time of master problem versus the number
of VMs.

Fig. 9. The average execution time of subproblem versus the number of VMs.

more VMs will make the variables scale up. Thus, the time for
solving mater problem will increase.

In Fig. 9, the average execution time of the subproblem
with different numbers of VMs is presented, including both
distributed BCD, ADMM, and centralized algorithm. For the
distributed BCD algorithm, the execution time increasing fast
when the number of VM is increasing. Comparing to ADMM,
the distributed BCD solves the supproblem sequentially. Thus,
if the number of VM increases, there will be more tasks for
distributed BCD to execute. When the number of VMs is increas-
ing, the time for the centralized algorithm is increasing while
the distributed algorithm almost remains unchanged. For the
centralized manner, the controller needs to solve the large-scale
problem to obtain the optimal solutions for all the VMs. With
the increase of VMs, the scaled-up problem needs more time to
handle. However, using ADMM as a distributed algorithm, the
problem for every VM is still the same size when the number of
VMs increases. Thus, the computational time is greatly reduced
adopting ADMM.

C. System Performance

In Fig. 10, the total system cost versus request data rate of
SFC is presented. Note that, since the outer loop is terminated

Fig. 10. The total system cost versus request data rate.

after three iterations, we give three results for the iterations
and the outer-loop iteration 3 is optimal for the optimization.
Furthermore, it is shown that when the request data for the SFC
increases, the total cost for the system increases. This is due to
more traffic volume will bring more costs for the network. After
the first iteration, the total cost reduced a lot. The difference of
the optimal value between the last two iterations is small.

VII. CONCLUSION

In this paper, we first propose an algorithm framework based
on joint Benders decomposition and ADMM to solve the re-
source allocation in an NFV network. The formulated resource
allocation problem, which involves integer and continuous vari-
ables, is composed by both VNF placement problem and traffic
allocation problem. To solve this mixed integer problem, we
design Benders decomposition as the outer loop algorithm to
separate the integer variables and continuous variables. The
subproblem is continuous and the master problem is discrete.
The subproblem with a large-scale of continuous variables is
divided into small problems, which are solved distributedly
using ADMM. This semi-distributed architecture can release
the computation burden of the controller, and increase the
flexibility of the system simultaneously. After a finite number
of iterations, the optimal solution can be obtained. Then, the
implementation of the algorithm for parallel computing using the
Hadoop MapReduce software framework is presented. Finally,
the simulation results indicate that our proposed algorithm has
satisfied convergence and performance.

APPENDIX

PROOF OF BENDERS DECOMPOSITION CONVERGENCE

The convergence of Benders decomposition is determined by
the convexity ofα. Thus, we only need to prove theα is a convex
function of δm.

First of all, it is obvious that constraints for (6) construct a
convex polytope, and the constraints for the subproblem is a
subset of (6). We assume that the two feasible solution sets for
the problem in (6) are δm,(1),vm,(1) and δm,(2),vm,(2). The

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

YU et al.: NETWORK FUNCTION VIRTUALIZATION RESOURCE ALLOCATION BASED ON JOINT BENDERS DECOMPOSITION AND ADMM 1717

solutions are associated by

α(δm,(1)) = Qt

(
vm,(1)

)
, (47)

α(δm,(2)) = Qt

(
vm,(2)

)
. (48)

Thus, the linear combination of the solutions can be expressed
as

δm,(3) = βδm,(1) + (1− β)δm,(2), (49)

vm,(3) = βvm,(1) + (1− β)vm,(2). (50)

The objective function of the subproblem at vm,(3) is given
by

Qt(v
m,(3)) =

K∑
k=1

γk

N∑
n=1

v
m,(3)
n,k (51)

=

K∑
k=1

γk

N∑
n=1

(
βv

m,(1)
n,k + (1− β)v

m,(2)
n,k

)
(52)

= β

K∑
k=1

γk

N∑
n=1

v
m,(1)
n,k + (1− β)

K∑
k=1

γk

N∑
n=1

v
m,(2)
n,k

(53)

= βα
(
δm,(1)

)
+ (1− β)α

(
δm,(2)

)
. (54)

When the binary variable is fixed as δm,(3), the subproblem’s
optimal solutionvm,∗ can be obtained. So we have the following
conclusion

Qt (v
m,∗) ≤ Qt

(
vm,(3)

)
. (55)

Thus, we proved the convexity of α with variables δm by the
inequality as follows

α
(
δm,(3)

)
≤ βα

(
δm,(1)

)
+ (1− β)α

(
δm,(2)

)
. (56)

REFERENCES

[1] J. G. Herrera and J. F. Botero, “Resource allocation in NFV: A comprehen-
sive survey,” IEEE Trans. Netw. Serv. Manage., vol. 13, no. 3, pp. 518–532,
Sep. 2016.

[2] Y. Li and M. Chen, “Software-defined network function virtualization: A
survey,” IEEE Access, vol. 3, pp. 2542–2553, 2015.

[3] R. H. Gau, H. T. Chiu, and P. K. Tsai, “Optimizing the service capacity
of SDN-based cellular networks with service chaining and NFV,” in
Proc. IEEE 27th Annu. Int. Symp. Pers., Indoor, Mobile Radio Commun.,
Valencia, Spain, Sep. 2016, pp. 1–6.

[4] S. D’Oro, L. Galluccio, S. Palazzo, and G. Schembra, “Exploiting con-
gestion games to achieve distributed service chaining in NFV networks,”
IEEE J. Sel. Areas Commun., vol. 35, no. 2, pp. 407–420, Feb. 2017.

[5] K. Yang, S. Martin, C. Xing, J. Wu, and R. Fan, “Energy-efficient power
control for device-to-device communications,” IEEE J. Sel. Areas Com-
mun., vol. 34, no. 12, pp. 3208–3220, Dec. 2016.

[6] J. An, Y. Zhang, X. Gao, and K. Yang, “Energy-efficient base station
association and beamforming for multi-cell multiuser systems,” IEEE
Trans. Wireless Commun., vol. 17, no. 4, pp. 2690–2702, Apr. 2018.

[7] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.:
Cambridge Univ. Press, 2004.

[8] R. Wang and V. K. N. Lau, “Delay-aware two-hop cooperative relay
communications via approximate MDP and stochastic learning,” IEEE
Trans. Inf. Theory, vol. 59, no. 11, pp. 7645–7670, Nov. 2013.

[9] L. Wang, Z. Lu, X. Wen, R. Knopp, and R. Gupta, “Joint optimization
of service function chaining and resource allocation in network function
virtualization,” IEEE Access, vol. 4, pp. 8084–8094, 2016.

[10] T. Park, Y. Kim, J. Park, H. Suh, B. Hong, and S. Shin, “QoSE: Quality
of security a network security framework with distributed NFV,” in Proc.
IEEE Int. Conf. Commun., Kuala Lumpur, Malaysia, May 2016, pp. 1–6.

[11] N. M. M. K. Chowdhury and R. Boutaba, “Network virtualization: State
of the art and research challenges,” IEEE Commun. Mag., vol. 47, no. 7,
pp. 20–26, Jul. 2009.

[12] G. Casale, S. Kraft, and D. Krishnamurthy, “A model of storage I/O
performance interference in virtualized systems,” in Proc. 31st Int. Conf.
Distrib. Comput. Syst. Workshops, Jun. 2011, pp. 34–39.

[13] V. Sciancalepore, F. Giust, K. Samdanis, and Z. Yousaf, “A double-tier
MEC-NFV architecture: Design and optimisation,” in Proc. IEEE Conf.
Standards Commun. Netw., Berlin, Germany, Oct. 2016, pp. 1–6.

[14] H. Wu, A. N. Tantawi, Y. Diao, and W. Wang, “Adaptive memory load
management in cloud data centers,” IBM J. Res. Develop., vol. 55, no. 6,
pp. 5:1–5:10, Nov. 2011.

[15] A. Marotta and A. Kassler, “A power efficient and robust virtual net-
work functions placement problem,” in Proc. 28th Int. Teletraffic Congr.,
Würzburg, Germany, Sep. 2016, vol. 1, pp. 331–339.

[16] M. Shifrin, E. Biton, and O. Gurewitz, “Optimal control of VNF deploy-
ment and scheduling,” in Proc. IEEE Int. Conf. Sci. Elect. Eng., Eilat,
Israel, Nov. 2016, pp. 1–5.

[17] W. Xie, J. Zhu, C. Huang, M. Luo, and W. Chou, “Network virtualization
with dynamic resource pooling and trading mechanism,” in Proc. IEEE
Global Commun. Conf., Austin, TX, USA, Dec. 2014, pp. 1829–1835.

[18] R. Jain and S. Paul, “Network virtualization and software defined network-
ing for cloud computing: A survey,” IEEE Commun. Mag., vol. 51, no. 11,
pp. 24–31, Nov. 2013.

[19] I. Volvach and L. Globa, “Mobile networks disaster recovery using SDN-
NFV,” in Proc. Int. Conf. Radio Electron. Info Commun., Kiev, Ukraine,
Sep. 2016, pp. 1–3.

[20] N. Herbaut, D. Negru, D. Magoni, and P. A. Frangoudis, “Deploying a
content delivery service function chain on an SDN-NFV operator infras-
tructure,” in Proc. Int. Conf. Telecommun. Multimedia, Heraklion, Greece,
Jul. 2016, pp. 1–7.

[21] H. A. Akyildiz and E. Saygun, “SDN-NFV-cloud introduction in the
context of service chaining,” in Proc. 23rd Signal Process. Commun. Appl.
Conf., Malatya, Turkey, May 2015, pp. 2605–2608.

[22] Y. Nam, S. Song, and J. M. Chung, “Clustered NFV service chaining
optimization in mobile edge clouds,” IEEE Commun. Lett., vol. 21, no. 2,
pp. 350–353, Feb. 2017.

[23] H. Moens and F. D. Turck, “Customizable function chains: Managing
service chain variability in hybrid NFV networks,” IEEE Trans. Netw.
Serv. Manage., vol. 13, no. 4, pp. 711–724, Dec. 2016.

[24] J. Wang, B. He, J. Wang, and T. Li, “Intelligent VNFs selection based
on traffic identification in vehicular cloud networks,” IEEE Trans. Veh.
Technol., vol. 68, no. 5, pp. 4140–4147, Nov. 2018.

[25] M. Zhu, J. Cao, Z. Cai, Z. He, and M. Xu, “Providing flexible services for
heterogeneous vehicles: An NFV-based approach,” IEEE Netw., vol. 30,
no. 3, pp. 64–71, May 2016.

[26] J. Prados-Garzon, J. J. Ramos-Munoz, P. Ameigeiras, P. Andres-
Maldonado, and J. M. Lopez-Soler, “Modeling and dimensioning of a
virtualized MME for 5G mobile networks,” IEEE Trans. Veh. Technol.,
vol. 66, no. 5, pp. 4383–4395, May 2017.

[27] P. Demestichas, A. Georgakopoulos, K. Tsagkaris, and S. Kotrotsos,
“Intelligent 5G networks: Managing 5G wirelessmobile broadband,” IEEE
Veh. Technol. Mag., vol. 10, no. 3, pp. 41–50, Sep. 2015.

[28] J. An, K. Yang, J. Wu, N. Ye, S. Guo, and Z. Liao, “Achieving sustain-
able ultra-dense heterogeneous networks for 5G,” IEEE Commun. Mag.,
vol. 55, no. 12, pp. 84–90, Dec. 2017.

[29] K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, and R. Fan, “Non-orthogonal mul-
tiple access: Achieving sustainable future radio access,” IEEE Commun.
Mag., vol. 57, no. 2, pp. 116–121, Feb. 2019.

[30] M. Shi, K. Yang, Z. Han, and D. Niyato, “Coverage analysis of integrated
sub-6GHz-mmWave cellular networks with hotspots,” IEEE Trans. Com-
mun., vol. 67, no. 11, pp. 8151–8164, Nov. 2019.

[31] Z. Han, M. Hong, and D. Wang, Signal Processing and Networking for
Big Data Applications. Cambridge, U.K.: Cambridge Univ. Press, 2017.

[32] J. Elias, F. Martignon, S. Paris, and J. Wang, “Efficient orchestration
mechanisms for congestion mitigation in NFV: Models and algorithms,”
IEEE Trans. Serv. Comput., vol. 10, no. 4, pp. 534–546, Jul. 2017.

[33] H. Zhang, Y. Xiao, L. X. Cai, D. Niyato, L. Song, and Z. Han, “A multi-
leader multi-follower stackelberg game for resource management in LTE
unlicensed,” IEEE Trans. Wireless Commun., vol. 16, no. 1, pp. 348–361,
Jan. 2017.

[34] H. Zhang, W. Ding, J. Song, and Z. Han, “A hierarchical game approach for
visible light communication and D2D heterogeneous network,” in Proc.
IEEE Global Commun. Conf., Dec. 2016, pp. 1–6.

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

1718 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 69, NO. 2, FEBRUARY 2020

[35] A. J. Conejo, E. Castillo, R. Minguez, and R. Garcia-Bertrand, Decomposi-
tion Techniques in Mathematical Programming: Engineering and Science
Applications. Berlin, Germany: Springer, 2006.

[36] J. Cabero, M. J. Ventosa, S. Cerisola, and Á. Baillo, “Modeling risk
management in oligopolistic electricity markets: A benders decomposition
approach,” IEEE Trans. Power Syst., vol. 25, no. 1, pp. 263–271, Feb. 2010.

[37] L. P. Qian, Y. J. A. Zhang, Y. Wu, and J. Chen, “Joint base station
association and power control via benders’ decomposition,” IEEE Trans.
Wireless Commun., vol. 12, no. 4, pp. 1651–1665, Apr. 2013.

[38] A. Nagarajan and R. Ayyanar, “Design and scheduling of microgrids
using benders decomposition,” in Proc. IEEE 43rd Photovolt. Spec. Conf.,
Portland, OR, USA, Jun. 2016, pp. 1843–1847.

[39] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
Jan. 2011.

[40] L. Liu, X. Chen, M. Bennis, G. Xue, and Z. Han, “A distributed ADMM
approach for mobile data offloading in software defined network,” in Proc.
IEEE Wireless Commun. Netw. Conf., New Orleans, LA, USA, Mar. 2015,
pp. 1748–1752.

[41] L. Liu and Z. Han, “Multi-block ADMM for big data optimization in smart
grid,” in Proc. Int. Conf. Comput., Netw. Commun., Garden Grove, CA,
USA, Feb. 2015, pp. 556–561.

[42] H. K. Nguyen, Y. Zhang, Z. Chang, and Z. Han, “Parallel and distributed
resource allocation with minimum traffic disruption for network virtual-
ization,” IEEE Trans. Commun., vol. 65, no. 3, pp. 1162–1175, Mar. 2017.

[43] H. K. Nguyen, A. Khodaei, and Z. Han, “A big data scale algorithm for
optimal scheduling of integrated microgrids,” IEEE Trans. Smart Grid,
vol. 9, no. 1, pp. 274–282, Jan. 2018.

[44] Y. Chu and Q. Xia, “Generating benders cuts for a general class of
integer programming problems,” in Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, J.-C.
Régin and M. Rueher, Eds. Berlin, Germany: Springer, 2004, pp. 127–141.

[45] M. C. P. Paredes, J. J. Escudero-Garzs, and M. J. F.-G. Garca, “PAPR
reduction via constellation extension in OFDM systems using generalized
benders decomposition and branch-and-bound techniques,” IEEE Trans.
Veh. Technol., vol. 65, no. 7, pp. 5133–5145, Jul. 2016.

[46] T. Lin, S. Ma, and S. Zhang, “Iteration complexity analysis of multi-block
ADMM for a family of convex minimization without strong convexity,”
J. Sci. Comput., vol. 69, no. 1, pp. 52–81, 2016.

[47] N. V. Sahinidis and I. E. Grossmann, “Convergence properties of gen-
eralized benders decomposition,” Comput. Chem. Eng., vol. 15, no. 7,
pp. 481–491, Jul. 1991.

[48] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence of
the ADMM in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 7, pp. 1750–1761, Apr. 2014.

[49] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[50] P. Lubell-Doughtie and J. Sondag, “Practical distributed classification
using the alternating direction method of multipliers algorithm,” in Proc.
IEEE Int. Conf. Big Data, Silicon Valley, CA, USA, Oct. 2013, pp. 773–
776.

[51] “Apache Hadoop,” Apr. 2015. [Online]. Available: https://hadoop.apache.
org/

[52] X. Gao, P. Wang, D. Niyato, K. Yang, and J. An, “Auction-based time
scheduling for backscatter-aided RF-powered cognitive radio networks,”
IEEE Trans. Wireless Commun., vol. 18, no. 3, pp. 1684–1697, Mar. 2019.

[53] T. White, Hadoop: The Definitive Guide, 1st ed. Sebastopol, CA, USA:
O’Reilly Media, Inc., 2009.

[54] V. Eramo and F. G. Lavacca, “Computing and bandwidth resource alloca-
tion in multi-provider NFV environment,” IEEE Commun. Lett., vol. 22,
no. 10, pp. 2060–2063, Aug. 2018.

Ye Yu (S’18) received the B.Sc. degree in information
engineering, in 2014, from the Beijing Institute of
Technology, Beijing, China, where he is currently
working toward the Ph.D. degree with the School of
Information and Electronics. From September 2016
to September 2018, he was a Visiting Student with the
Computer Science Department, University of Hous-
ton, Houston, TX, USA. His research interests in-
clude green communications, network virtualization,
heterogeneous networks, and fog computing.

Xiangyuan Bu received the B.E. and Ph.D. degrees
in communications engineering from the Beijing In-
stitute of Technology (BIT), Beijing, China, in 1987
and 2007, respectively. He is currently a Professor
with the School of Information and Electronics, BIT.
His current research interests include digital signal
processing, channel coding theory, MIMO system,
space time signal processing, and satellite communi-
cations.

Kai Yang (M’12) received the B.E. degree from
the National University of Defense Technology,
Changsha, China, in 2005 and the Ph.D. degree from
the Beijing Institute of Technology, Beijing, China,
in 2010, both in communications engineering. From
January 2010 to July 2010, he was with the De-
partment of Electronic and Information Engineering,
Hong Kong Polytechnic University. From 2010 to
2013, he was with the Alcatel-Lucent Shanghai Bell,
Shanghai, China. In 2013, he joined the Laboratoire
de Recherche en Informatique, University Paris Sud

11, Orsay, France. He is currently with the School of Information and Elec-
tronics, Beijing Institute of Technology. His current research interests include
convex optimization, massive MIMO, mmWave systems, resource allocation,
and interference mitigation.

Hung Khanh Nguyen received the B.S. degree from
the Ho Chi Minh City University of Technology, Ho
Chi Minh City, Vietnam, in 2010, the M.S. degree
from Kyung Hee University, Seoul, South Korea, in
2012, and the Ph.D. degree in electrical and com-
puter engineering from the University of Houston,
Houston, TX, USA, in 2017. His research interests
include big data analytic, resource allocation and
game theory, distributed and parallel optimization,
large-scale data processing in smart grid and wireless
network.

Zhu Han (S’01–M’04–SM’09–F’14) received the
B.S. degree in electronic engineering from Tsinghua
University, Beijing, China, in 1997, and the M.S. and
Ph.D. degrees in electrical and computer engineering
from the University of Maryland, College Park, MD,
USA, in 1999 and 2003, respectively.

From 2000 to 2002, he was an R&D Engineer of
JDSU, Germantown, MD, USA. From 2003 to 2006,
he was a Research Associate with the University of
Maryland. From 2006 to 2008, he was an Assistant
Professor with Boise State University, Boise, ID,

USA. He is currently a John and Rebecca Moores Professor with the Electrical
and Computer Engineering Department as well as with the Computer Science
Department, University of Houston, Houston, TX, USA. He is also a Chair
Professor with the National Chiao Tung University, Hsinchu, Taiwan, R.O.C. His
research interests include wireless resource allocation and management, wireless
communications and networking, game theory, big data analysis, security, and
smart grid. Dr. Han was the recipient of an NSF Career Award in 2010, the Fred
W. Ellersick Prize of the IEEE Communication Society in 2011, the EURASIP
Best Paper Award for the Journal on Advances in Signal Processing in 2015,
IEEE Leonard G. Abraham Prize in the field of communications systems (Best
Paper Award in IEEE JSAC) in 2016, and several best paper awards in IEEE
conferences. He was an IEEE Communications Society Distinguished Lecturer
from 2015 to 2018, and has been an AAAS Fellow since 2019 and ACM
Distinguished Member since 2019. He has been 1% highly cited Researcher
since 2017 according to Web of Science.

Authorized licensed use limited to: University of Houston. Downloaded on December 14,2020 at 21:50:04 UTC from IEEE Xplore. Restrictions apply.

https://hadoop.apache.org/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

