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The era of ‘big data’

The "big data” presents us opportunities:

» Personal advertisement. 3
» Intelligent social network analysis. ‘\0\ ,,mmm‘f - l’@{)
Unslmmued atc
» Smart city development. $B' <.
. Blg =
» Medical data management. s..uc.m Dat Streaming Data

v

Smart grid evolution. \9 Zetiabytes : e
Geophysics.

v

Figure: Big data ‘3V'.
» Big data requires big models and novel methods.

» Thousands of parameters on TBs of data.

» Big data needs systems built for it.
» Hadoop, Apache Spark, Storm, Yahoo! S4, Parameter sever.
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Motivations and Contributions

» New computational mathematical models and
methodologies must be explored.

» Respect the inherent structure of the data. (Sparse,
low rank, prior...).
» Enjoys robustness and scalability.

» Review the parallel and distributed optimization
algorithms based on ADMM.

» Investigated the ‘big data’ optimization methods
for modern communication networks.

» Smart grid security
» Mobile data traffic management
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Dual Ascent Methods

Consider an optimization problem of the form

minf(x) s.t. Ax=c,
xeX

v

The Lagrangian: £(x,A) = f(x) + A" (Ax — c),

v

Dual function: g(A) = infy L(x, A),

v

Dual Problem: maxy g(\),

v

Optimal solution: x* = arg min, £(x, A¥),

xK*1 = arg min, £(x, A¥),

Ak-l—l — Ak + pk(Axk+1 - C).

Require an appropriate step size p and assumptions of strong
convexity of the objective function f.

» Dual Ascent: {
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Method of Multipliers

Introduce an augmentation ||Ax — c||3 to the Lagrangian:

> The Augmented Lagrangian:
£,(x,A) = F(x) + X" (Ax — c) + §]|Ax — cl

k+1 _ : k
» Method of Multipliers: { ))(‘k+1—:a/\r% T_I;)Eﬁilgfl)\_ )(;)7
Pros:
» Stable, robust and fast compare with the dual ascent method.
> No need to tune the parameter p during each iteration.
Cons:

» Difficult to decouple and parallelize due to the augmentation
|AX — c|3.
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Alternating Direction Method of Multipliersf] ADMM)
The general form of ADMM is expressed as

min  fi(x1) + f2(x2) s.t. Aixg+ Axxp =c. (1)
x1 €EX1,x2€A>

The augmented Lagrangian for (1) is
Ly(x1,%2,A) = fi(x1) + f2(x2) + AT (A1x1 + Axxz — )
+ gHAlxl + Aoxs — CH%,

A Gauss-Seidel iterations of x; and x> as follows

x11<+1
k+1
X

= arg min,, L,(x1, xlz‘, }\k),
= arg min,, Ep(x’frl7 X2, }\k),
AL = X9 4 p(AxT 4 Apxs T — ).

Global convergence for convex optimization with a convergence

rate O(1/k)
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Direct Extension

Consider the following convex optimization problem

min f(x) = fi(x;) + ...+ fn(xn),

X1,X2;-- XN
s.t. Aixi+ ...+ Anxy =c,
xieX, i=1,...,N. (2)

» The augmented Lagrangian:

N
£,({xiHe A Zf +ATZAx, )+ 21D A —cl3
i=1
> Gauss-Seidel Multi-block ADMM:

X; = arg min,, £p({xk+ Yi<is Xis AX} }js iy 29, i=1,...,N.
Ak+1 )\k +p(zl 1A Xk+1 C).

Gauss-Seidel mulit-block ADMM is not necessarily convergent

11/48



Variable Splitting Multi-block ADMM

Reformulate (2) by introducing auxiliary variable z

c
min Zf +12(2) st Axi+z= .
where Z = {z] Z:N:1 z; = 0}, Iz(z) is the indicator function.

» The augmented Lagrangian

N N
T c P C 2
p— E f -|-/Z(Z E A (A,‘X,‘—FZ,'—N)-FE i:EI HA,‘X,‘-FZ,‘— N”z

i=1

> Variable splitting multi-block ADMM

X< = arg min, ﬁﬂ(XHZ, S AN,
zfﬂfargmm Lo(xfzi, AF), Vi=1,...,N,
PYALED LT p(A Xi +2zi — )

Converge as two-block setting, but the number of variables and

constraints will increase substantially when N is large.
12 /48



Proximal Jacobian ADMM

Recall the augmented Lagrangian:

N
L({x V1 ) = Zf +>\TZAX,_ gHZA,x,_cng
i=1

A proximal term is added to the augmented Lagrangian, and the update
of x; is performed concurrently:

xf.‘“:argminxl.Ep(xi,{xf}j;éi,)\k) + 31— x5,
N = N (3, At —e), Vi=1,...,N.

where [|x;[|3 = x; Pix; for some symmetric and positive semi-definite
matrix P; = 0.
The involvement of the proximal term

» Make subproblem of x; strictly or strongly convex

> Ensure the convergence. Easier to solve.
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Recap: From Dual Ascent to Multi-block ADMM

Augmentation

: Method of — Alternating Method ]
Dual Ascent Multipliers [ of Multipliers
Decompose Auxiliary variabl1 Proximal term‘

[ Dual Decomposition ] [ Variable Splitting J [Proximal Jacobian]

ADMM ADMM

1. Stability and robustness are the utmost concern for an
optimization algorithm.

2. Should better be distributed and parallel.

3. If possible, we want it converge fast.
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Smart Grid ‘Big Data’

The anticipated smart grid data deluge:

1. The deployment of phasor measurement units for future North
American power grid will generate 4.15 TB data per day.

2. 61.8 million smart meters are deployed in the U.S. by the end
of 2013. Every one million users will produce 27.3TB per year.

16
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Blackout

> Increasing integration between cyber operations and physical
infrastructures for generation, transmission, and distribution

control.
» The security and reliability are not guaranteed

GeoStar 45
EST 14 Aug.

Figure: 2003 blackout
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Contingency Analysis
Simple example

330MW ==> <==120MW 330MWT:>
A ]

1 2
260 MW\ /ZD MW
3

450 MW

. Assume line 1-2 is disconnected.
. Generators A and B cannot change productions quickly.

. The flows over other lines would increase.

A W NN =

. Trigger cascading failure.
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Security Constrained Optimal Power Flow (SCOPF)

SCOPF: Minimizing the cost of system operation while satisfying a
set of postulated contingency constraints.

min
{x}§{u}§
s.t.

Challenges:

fo(u®) scheduling objective

0,0

g (x,u ) = 0, power flow equations

(
h%(x°,u®) < 0, operating limits for base case
g%(

x¢,u®) = 0, power flow equations

=

€(x°,u) < 0, operating limits for contingency k
wl —

u¢[2 < A, c=1,...,C,security constrains

1. Number of constraints is prohibitive.

2. How to find the best operating point with a scalable
algorithm?
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DC Approximation

Power flow equations:

P; | Vi|| Vk|(Gik cos Oix + Bik sin Oj),

11175

Qi

’V‘|Vk|( ik sin 9,’k — B,'k COS@,‘/()7

>
Il
—

where Gj and Bji are the real and imaginary part of (i, k)t
element of the bus admittance matrix.
DC power flow approximation:

1. Neglect the reactive power.

2. Neglect resistance of the branches.

3. Assume all voltage magnitudes = 1.0 p.u.
4

. Assume all angles are small.

20 /48



DC SCOPF

‘N-1" contingency, corrective setting:

min
{GC}S:Q;{Pg’C}CC:o

PGS

i€g
subject to B9 .0° + P90 _ A8OpPEO —
€ 0 + PIC — AECPEC =
B26°| — Frnax <0,
IBF0°| — Frmax <0,

P£0 < pg0 < P,
PE< < PEC < Pec,
Pe0 —PEC| < A,
ieg, c¢c=1,...,C,

where Bp,s and Bf can be modified from the bus admittance
matrix Yp,s. A8 C is the generator connection matrix.
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A Distributed Approach by ADMM

Introduce a slack variable p° to rewrite [P0 — P&€| < A, as:

PE0 — P&C 4 p° = A, (3)
0<p° <2, c=1,...,C.

The partial scaled augmented Lagrangian associated with (3) can
be calculated with follows

L,({PE Y i P 1 I YEy)
C C
=D AF(PET) £ 3 PSS —PECpt - Actut
ieg c=1

Iterate till convergence
1. Update {P&°}.
2. Update {P&< p°}.
3. Update dual variable p©.



A Distributed Approach by ADMM (cont.)
The update for base case (Modified OPF problem):

P&k 4 1] = argmin Z F&(P&0)
Pl cg

c C
P
+ 37 P — PECLK] 4 p¥I) — Ac + ueTKIB,

c=1

The update for contingency case ¢
c
PE<[k + 1] = arg min ©[PE0[k -+ 1] — P& + p¢ — A+ u[K] .
Pg,c,pc

The scaled dual variable is updated by:

pllk + 1] = pClk] + P&k + 1] — P&[k + 1] + p[k + 1] — A..
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Distributed Implementation

Base Case Contingency 1

01BN

Contingency 2 Contingency K

Figure: Distributed Implementation.

1. On multi-core machine.

2. High performance computer cluster using MPI (message
passing interface).

3. On cloud using Hadoop or Apache Spark.
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Numerical Results

Evaluation setup: Modified data of IEEE 57 bus, IEEE 118 bus and
IEEE 300 bus generated by MATPOWER

1.2 ‘ '
= |EEE case57
1t ===|EEE case118
‘‘‘‘‘ IEEE case300
0.8
S
W 0.6
()
=
T 04r
[0)
04
0.2r
0_ ..............
0% 10 20 30 40 50

Number of Iterations

Figure: Convergence performance.
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Numerical Results (cont.)

Using the Matlab distributed and parallel toolbox, Subproblems are
solved by CVX.

10 —Centralized Algofithm
[ ---Proposed Algorithm
2
| ]
I
g / ..‘...-.”...._..
’ 10‘ i Lt

20 40 60 80 100
Numer of Contingencies

Figure: Computing time for IEEE 57 bus.
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Global Mobile Data Traffic

18
Exabytes per Month
M Middle East and Africa (9.4%)
W North America (18.6%)
M Asia Pacific (42.4%)
B Central and Eastern
g Europe (10.3%)

W Western Europe (12.0%)
M Latin America (7.3%)

Figures in parentheses refer to regional
share in 2018
1EB = 1000PB =1000000TB

2013 2014 2015 2016 2017 2018

Figure: The global mobile data traffic forecast by region.

» Expected to reach 15.9 EB per month by 2018.
» A 11-fold increase over 2013.

[m] = -




Mind the Gap

Revenue vs. Traffic Growth

Revenues &

Traffic Gap
Widening

Revenues

Voice Era

Data Era

Figure: Revenue & traffic gap. Source:radisys.com

The sheer volume of the mobile ‘big data’ traffic far exceeds

» The growth in service revenues.

» The budgets required to address the new demands.

29 /48



Mobile Data Offloading

OpenFlow enabled
gateways

| OpenFlow Controller ‘

ANDSF Access netwprk d|sc9very
and selection function

AY ’ \ \\
, [ \ 7 ! N
| @ @ \ @ @ (@ @ \
\ \ / /
N N ! X @ /
> Base station =<~ WiFi or<small cell -

_______ T=--------"access points Mobile user
Figure: An illustration of the network model

> Mobile data offloading: Offload traffic from cellular networks to
alternate wireless technologies.

> Software defined network (SDN) at the edge: Dynamically route the

traffic in a mobile network.
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Mobile Data Offloading in SDN

Consider a mobile network

>

>

>

ABS be{1,...,B} serves a group of mobile users.

An AP a € {1,..., A} provides bandwidth for data offloading.

Xp = [Xp1,...,Xpa] | represent the offloaded traffic of BS b.
> Xp, denotes the data of BS b offloaded through AP a.

BS b's utility: Up(xp). Non-decreasing, non-negative and

concave.

Y, = [Va1,.-.,va8] " represents the admitted traffic of AP a
> yab represents the admitted data traffic from BS b.

AP a's cost: L,(y,). Non-decreasing, non-negative and
convex.

Feasible mobile data offloading decision: xp; = yap, Va and Vb.

31/48



Mobile Data Offloading in SDN (Cont.)

» Utility of base stations: Zle Up(xp).
» Cost of access points: Z’:Zl La(y,).

» Total revenue: Zle Up(xp) — 2;\21 La(y,).
» Equivalent revenue maximization problem:

A B

min Z La(y,) — Z Up(xp), Service revenue

{x1,-xB} Y1, ¥4} a—1 b—1
B
s.t ZYabSCa, Va, Capacity constraint
b=1

Xpa = Yab- Va,b Consensus
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Challenges

» Privacy preserving: Utility functions at BSs and cost functions
at APs should be kept private.

» How to address the information asymmetry?

» Concurrent update: The updating process at the BSs and APs
should be performed concurrently.

» How to get concurrency?

» Scalability: The operations at the SDN controller should be
simple to alleviate the computation burden.

» How to design a scalable scheme?

33 /48



Proximal Jacobian ADMM

The Lagrangian function

A B
Lo(x,y,A) = Z La(y,) — Z Up(xp) + ZZ Aab(Xba — Yab) g Z > llxba — abll3-
a=1 b=1

a=1 b=1

Base Station Update:

xph = arg min —Up(xp) + = Z X2 — yis

a=1

k2
§||Xb —Xb||Pf-

Access Point Update:

B k
A 1
4£1 = argrmin(L(y) 4P Z lyas — xts — 5I1va = Y2l

Z Yab S Ca-
b=1

SDN Controller Update:

M= Mt 3 SO0 — ).
b=1 a=1

N \
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Distributed Update Scheme

SDN Controller

i
|

Base Stations Access Points

==
W
;gg;;

@ Gather: BSs and APs concurrently update x and y, which are gathered by controller.

@ Scatter: Controller simply updates 4, which are scattered to BSs and APs

Figure: Distritbuted update scheme

Iterative gather-scatter scheme (Map-reduce).

N Ak A
» Signaling: p;‘b = (y‘fb - Tj’b) q’éa = (Xll;a + fb)
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Numerical Results

Evaluation setup: B =5 base stations and A = {5, 10} access
points. C; = 10Mbps

0.9r

Relative objective

067 —Proposed distributed algorithm. B =5, A =5.
1

5, A
== Proposed distributed algorithm. B =5, A =10.
=+== Optimal objective

10 20 30 40 50
lteration

0.5
0

Figure: Convergence performance
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Numerical Results(Cont.)

Total market gap: Z:‘Zl Zle(xba — Yab)

1+ = Offloading gap between BS1 and AP1, y11-x11
== Offloading gap between BS1 and AP2, y12-x21
== =Total offloading gap between BSs and APs
0.8¢ b
& 06f ]
O]
o
S
= 04 1
£
=
o
pzd
0.2f b
0 L
02 I L I I
0 10 20 30 40 50

Iterations

Figure: Offloading gap
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Scalable service management in mobile cloud computing

Mobile agent
g(Cellular Base Station)!

A S
Mobile agent
@ (Clogdlet)

o)
ek

.@I Wireless connection with &

random latency

Figure: An illustration of mobile cloud computing infrastructure.
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Sparse optimization for false data injection attacks
detection

Z is the normal temporal state measurement, A is the sparse
attack matrix.

min [Zol. + AA1 st Ze=ZotA. (4
0
where

> || - ||l«: nuclear norm. Sum of singular values of a matrix.

> || - |l1: hnorm. Sum of absolute values of matrix entries.

Figure: Temporal measurements illustration.
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Distributed State Estimation

A fully distributed Gauss-Newton method for state estimation in
power system.
N

min  f(x) = Z(z,- — hi(xi))TRi_l(Zi —hi(x;)),

Xj... XN

s.t. Xj=...=Xpn,

y N\ 0.35
Arcall b ---The best RMSE(Agent 2)
03 —The worst RMSE (Agent 52)
- - - Average RMSE

\ Area Au

J \ Area A; /

9 : Injection Measurement —@— : Flow Measurement

100
Iterations
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Smart City

Air quality monitoring using big data techniques.

ks T NSNS Glend e EESAUENY TRy o .
I ||
L, Northeast” f
Bal Air Hollywood  LosAngeles  San Gabriel - .

La Brea Monterey- Lwe
. LosAngeles™) Park /

ood

Qe City {77 T —Lmontebelic B2

South Los ol bico Rive

Ange_‘CS ] ICO Hivera

anne)‘( i
) Lynwood /

agFthome 1054

w Norwalk_

Gardena @) e

Gead
Y W oLokenlbd
Torrance | Wigeoct, , o
Falos Verdes o ir. Cypress N-
& || [ ] B

Haty
k3 Long Beach

Comptan

Ranchn Westmine o
| |

Figure: Taxi route. Figure: Air monitoring map

» Ultra fine particles and PM2.5 monitoring.
> Taxi-carried air monitoring sensor.
» How to infer the air quality index spatially and temporally?
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Smart Meter Data Clustering

From smart meter data, try to tell users usage behaviors
1. Housewives?
2. Commute workers?
3. Ph.D students?

10 15 El
24 feature dimensions.h
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Conclusions

> A brief review of the alternating direction method of
multipliers.

» Zoomed in two applications of big data optimization in
modern communication networks.

» Security constrained optimal power flow in smart grid.
» Data offloading in software defined networks.

» Effective management and processing of ‘big data’ has the
potential to significantly improve network security and
management efficiency.
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Thanks!
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