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The era of ‘big data’

The “big data” presents us opportunities:

I Personal advertisement.

I Intelligent social network analysis.

I Smart city development.

I Medical data management.

I Smart grid evolution.

I Geophysics.

Figure: Big data ‘3V’.
I Big data requires big models and novel methods.

I Thousands of parameters on TBs of data.

I Big data needs systems built for it.
I Hadoop, Apache Spark, Storm, Yahoo! S4, Parameter sever.
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Motivations and Contributions

I New computational mathematical models and
methodologies must be explored.

I Respect the inherent structure of the data. (Sparse,
low rank, prior...).

I Enjoys robustness and scalability.

I Review the parallel and distributed optimization
algorithms based on ADMM.

I Investigated the ‘big data’ optimization methods
for modern communication networks.

I Smart grid security
I Mobile data traffic management

5 / 48



Outline

Introduction

Alternating Direction Method of Multipliers (ADMM)
From Dual Ascent to ADMM
From Two-blocks to Multi-blocks

Big Data Optimization for Modern Communication Networks
Application 1: Security Constrained Optimal Power Flow
Application 2: Data Offloading in Software Defined Networks

Other Applications

Future Works

Conclusions

6 / 48



Dual Ascent Methods

Consider an optimization problem of the form

min
x∈X

f (x) s.t. Ax = c,

I The Lagrangian: L(x,λ) = f (x) + λ>(Ax− c),

I Dual function: g(λ) = infx L(x,λ),

I Dual Problem: maxλ g(λ),

I Optimal solution: x∗ = arg minx L(x,λ∗),

I Dual Ascent:

{
xk+1 = arg minx L(x,λk),

λk+1 = λk + ρk(Axk+1 − c).

Require an appropriate step size ρ and assumptions of strong
convexity of the objective function f .

7 / 48



Method of Multipliers

Introduce an augmentation ‖Ax− c‖22 to the Lagrangian:

I The Augmented Lagrangian:
Lρ(x,λ) = f (x) + λ>(Ax− c) + ρ

2‖Ax− c‖22,

I Method of Multipliers:

{
xk+1 = arg minx Lρ(x,λk),

λk+1 = λk + ρ(Axk+1 − c),

Pros:

I Stable, robust and fast compare with the dual ascent method.

I No need to tune the parameter ρ during each iteration.

Cons:

I Difficult to decouple and parallelize due to the augmentation
‖Ax− c‖22.
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Alternating Direction Method of Multipliers(ADMM)

The general form of ADMM is expressed as

min
x1∈X1,x2∈X2

f1(x1) + f2(x2) s.t. A1x1 + A2x2 = c. (1)

The augmented Lagrangian for (1) is

Lρ(x1, x2,λ) = f1(x1) + f2(x2) + λ>(A1x1 + A2x2 − c)

+
ρ

2
‖A1x1 + A2x2 − c‖22,

A Gauss-Seidel iterations of x1 and x2 as follows
xk+1
1 = arg minx1 Lρ(x1, xk2 ,λ

k),

xk+1
2 = arg minx2 Lρ(xk+1

1 , x2,λ
k),

λk+1 = λk + ρ(A1xk+1
1 + A2xk+1

2 − c).

Global convergence for convex optimization with a convergence
rate O(1/k)
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Direct Extension

Consider the following convex optimization problem

min
x1,x2,...,xN

f (x) = fi (xi ) + . . .+ fN(xN),

s.t. Aixi + . . .+ ANxN = c,

xi ∈ Xi , i = 1, . . . ,N. (2)

I The augmented Lagrangian:

Lρ({xi}Ni=1,λ) =
N∑
i=1

fi (xi ) + λ>(
N∑
i=1

Aixi − c) +
ρ

2
‖

N∑
i=1

Aixi − c‖22

I Gauss-Seidel Multi-block ADMM:{
xi = arg minxi Lρ({xk+1

j }j<i , xi , {xkj }j>i ,λ
k), i = 1, . . . ,N.

λk+1 = λk + ρ(
∑N

i=1 Aix
k+1
i − c).

Gauss-Seidel mulit-block ADMM is not necessarily convergent
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Variable Splitting Multi-block ADMM

Reformulate (2) by introducing auxiliary variable z

min
x,z

N∑
i=1

fi (xi ) + IZ(z) s.t. Aixi + zi =
c

N
, i = 1, . . . ,N,

where Z = {z|∑N
i=1 zi = 0}, IZ(z) is the indicator function.

I The augmented Lagrangian

Lρ =
N∑
i=1

fi (xi ) + IZ(z) +
N∑
i=1

λ>
i (Aixi + zi −

c

N
) +

ρ

2

N∑
i=1

‖Aixi + zi −
c

N
‖22.

I Variable splitting multi-block ADMM
xk+1
i = argminxi

Lρ(xi , z
k
i ,λ

k
i ),

zk+1
i = argminzi

Lρ(xk+1
i , zi ,λ

k
i ), ∀i = 1, . . . ,N,

λk+1
i = λk

i + ρ(Aixi + zi − c
N
).

Converge as two-block setting, but the number of variables and
constraints will increase substantially when N is large.
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Proximal Jacobian ADMM

Recall the augmented Lagrangian:

Lρ({xi}Ni=1,λ) =
N∑
i=1

fi (xi ) + λ>(
N∑
i=1

Aixi − c) +
ρ

2
‖

N∑
i=1

Aixi − c‖22

A proximal term is added to the augmented Lagrangian, and the update
of xi is performed concurrently:{

xk+1
i =arg minxi Lρ(xi , {xkj }j 6=i ,λ

k)+ 1
2‖xi−xki ‖2Pi

,

λk+1 = λk + γρ(
∑N

i=1 Aix
k+1
i − c), ∀i = 1, . . . ,N.

where ‖xi‖2Pi
= x>i Pixi for some symmetric and positive semi-definite

matrix Pi � 0.
The involvement of the proximal term

I Make subproblem of xi strictly or strongly convex

I Ensure the convergence. Easier to solve.
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Recap: From Dual Ascent to Multi-block ADMM

Dual Ascent
Alternating Method 

of Multipliers
Method of 
Multipliers

Dual Decomposition Variable Splitting
ADMM

Decompose

Proximal Jacobian
ADMM

Augmentation

Auxiliary variable Proximal term

1. Stability and robustness are the utmost concern for an
optimization algorithm.

2. Should better be distributed and parallel.

3. If possible, we want it converge fast.
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Smart Grid ‘Big Data’
2221 

Conceptual Model

Secure Communication Flows
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Figure 5-1. Interaction of Roles in Different Smart Grid Domains 2223 

through Secure Communication 2224 

2225 

135 

Source: Updated NIST 
Smart Grid Framework 3.0

The anticipated smart grid data deluge:

1. The deployment of phasor measurement units for future North
American power grid will generate 4.15 TB data per day.

2. 61.8 million smart meters are deployed in the U.S. by the end
of 2013. Every one million users will produce 27.3TB per year.
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Blackout

I Increasing integration between cyber operations and physical
infrastructures for generation, transmission, and distribution
control.

I The security and reliability are not guaranteed

Figure: 2003 blackout
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Contingency Analysis

Simple example

1. Assume line 1-2 is disconnected.

2. Generators A and B cannot change productions quickly.

3. The flows over other lines would increase.

4. Trigger cascading failure.
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Security Constrained Optimal Power Flow (SCOPF)

SCOPF: Minimizing the cost of system operation while satisfying a
set of postulated contingency constraints.

min
{xc}C0 ;{uc}C0

f 0(u0) scheduling objective

s.t. g0(x0,u0) = 0, power flow equations

h0(x0,u0) ≤ 0, operating limits for base case

gc(xc ,uc) = 0, power flow equations

hc(xc ,uc) ≤ 0, operating limits for contingency k

‖u0 − uc‖2 ≤ ∆c , c = 1, . . . ,C , security constrains

Challenges:

1. Number of constraints is prohibitive.

2. How to find the best operating point with a scalable
algorithm?
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DC Approximation

Power flow equations:

Pi =
N∑

k=1

|Vi ||Vk |(Gik cos θik + Bik sin θik),

Qi =
N∑

k=1

|Vi ||Vk |(Gik sin θik − Bik cos θik),

where Gik and Bik are the real and imaginary part of (i , k)th

element of the bus admittance matrix.
DC power flow approximation:

1. Neglect the reactive power.

2. Neglect resistance of the branches.

3. Assume all voltage magnitudes = 1.0 p.u.

4. Assume all angles are small.
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DC SCOPF

‘N-1’ contingency, corrective setting:

min
{θc}Cc=0;{Pg,c}Cc=0

∑
i∈G

f gi (Pg ,0
i )

subject to B0
busθ

0 + Pd ,0 − Ag ,0Pg ,0 = 0,

Bc
busθ

c + Pd ,c − Ag ,cPg ,c = 0,

|B0
f θ

0| − Fmax ≤ 0,

|Bc
f θ

c | − Fmax ≤ 0,

Pg ,0 ≤ Pg ,0 ≤ Pg ,0,

Pg ,c ≤ Pg ,c ≤ Pg ,c ,

|Pg ,0 − Pg ,c | ≤ ∆c ,

i ∈ G, c = 1, . . . ,C ,

where Bbus and Bf can be modified from the bus admittance
matrix Ybus . Ag ,c is the generator connection matrix.
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A Distributed Approach by ADMM

Introduce a slack variable pc to rewrite |Pg ,0 − Pg ,c | ≤ ∆c as:

Pg ,0 − Pg ,c + pc = ∆c (3)

0 ≤ pc ≤ 2∆c , c = 1, . . . ,C .

The partial scaled augmented Lagrangian associated with (3) can
be calculated with follows

Lρ({Pg ,c}Cc=0; {pc}Cc=1; {µc}Cc=1)

=
∑
i∈G

f gi (Pg ,0
i )+

C∑
c=1

ρc

2
‖Pg ,0−Pg ,c +pc−∆c +µc‖22.

Iterate till convergence

1. Update {Pg ,0}.
2. Update {Pg ,c ,pc}.
3. Update dual variable µc .
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A Distributed Approach by ADMM (cont.)

The update for base case (Modified OPF problem):

Pg ,0[k + 1] = arg min
Pg,0

∑
i∈G

f gi (Pg ,0
i )

+
C∑

c=1

ρc

2
‖Pg ,0 − Pg ,c [k] + pc [k]−∆c + µc [k]‖22,

The update for contingency case c

Pg ,c [k + 1] = arg min
Pg,c ,pc

ρc

2
‖Pg ,0[k + 1]−Pg ,c + pc −∆c + µc [k]‖22,

The scaled dual variable is updated by:

µc [k + 1] = µc [k] + Pg ,0[k + 1]− Pg ,c [k + 1] + pc [k + 1]−∆c .
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Distributed Implementation

Figure: Distributed Implementation.

1. On multi-core machine.
2. High performance computer cluster using MPI (message

passing interface).
3. On cloud using Hadoop or Apache Spark.
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Numerical Results

Evaluation setup: Modified data of IEEE 57 bus, IEEE 118 bus and
IEEE 300 bus generated by MATPOWER

Figure: Convergence performance.
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Numerical Results (cont.)

Using the Matlab distributed and parallel toolbox, Subproblems are
solved by CVX.

Figure: Computing time for IEEE 57 bus.
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Global Mobile Data Traffic

© 2014 Cisco and/or its affiliates. All rights reserved. This document is Cisco Public. Page 6 of 40 

Figure 2.   Global Mobile Data Traffic Forecast by Region 

Top Global Mobile Networking Trends 

The sections that follow identify nine major trends contributing to the growth of mobile data traffic. 

1. Transitioning to Smarter Mobile Devices

2. Measuring Internet of Everything Adoption—Emerging Wearable Devices 

3. Analyzing Mobile Applications—Video Dominance

4. Profiling Bandwidth Consumption by Device 

5. Assessing Mobile Traffic/Offload by Access Type (2G, 3G, and 4G)

6. Comparing Mobile Network Speeds 

7. Reviewing Tiered Pricing—Managing Top Mobile Users 

8. Adopting IPv6—Beyond an Emerging Protocol 

9. Defining Mobile “Prime Time”—Peak vs. Average Usage 

Exabytes per Month

Figures in parentheses refer to regional 
share in 2018
1EB = 1000PB =1000000TB

Figure: The global mobile data traffic forecast by region.

I Expected to reach 15.9 EB per month by 2018.

I A 11-fold increase over 2013.
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Mind the Gap

4Radisys Corporation Confidential

Data Remains The Growth Engine

Capacity Mind The Gap

Text

 Traffic Doubling every 12 months

 Video = Operators’ Albatross

 Increase ARPU

 Lower Cost per Bit

Source: Cisco VNI Source: Heavy Reading

Revenues

Traffic

Revenues & 

Traffic Gap 

Widening

Revenue vs. Traffic Growth

Voice Era

Data Era

By 2016 Data increase will be 30x but Revenue will be 2x* 

* Source = Maravedis-Rethink 2012

Figure: Revenue & traffic gap. Source:radisys.com

The sheer volume of the mobile ‘big data’ traffic far exceeds

I The growth in service revenues.

I The budgets required to address the new demands.

29 / 48



Mobile Data Offloading

IP Networks

OpenFlow Controller

ANDSF

Base station  WiFi or small cell 
access points

OpenFlow enabled 
gateways

Access network discovery 
and selection function

Base station
Mobile user

Figure: An illustration of the network model

I Mobile data offloading: Offload traffic from cellular networks to
alternate wireless technologies.

I Software defined network (SDN) at the edge: Dynamically route the
traffic in a mobile network.
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Mobile Data Offloading in SDN

Consider a mobile network

I A BS b ∈ {1, . . . ,B} serves a group of mobile users.

I An AP a ∈ {1, . . . ,A} provides bandwidth for data offloading.

I xb = [xb1, . . . , xbA]> represent the offloaded traffic of BS b.

I xba denotes the data of BS b offloaded through AP a.

I BS b’s utility: Ub(xb). Non-decreasing, non-negative and
concave.

I ya = [ya1, . . . , yaB ]> represents the admitted traffic of AP a

I yab represents the admitted data traffic from BS b.

I AP a’s cost: La(ya). Non-decreasing, non-negative and
convex.

I Feasible mobile data offloading decision: xba = yab,∀a and ∀b.
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Mobile Data Offloading in SDN (Cont.)

I Utility of base stations:
∑B

b=1 Ub(xb).

I Cost of access points:
∑A

a=1 La(ya).

I Total revenue:
∑B

b=1 Ub(xb)−∑A
a=1 La(ya).

I Equivalent revenue maximization problem:

min
{x1,...,xB},{y1,...,yA}

A∑
a=1

La(ya)−
B∑

b=1

Ub(xb), Service revenue

s.t
B∑

b=1

yab ≤ Ca, ∀a, Capacity constraint

xba = yab. ∀a, b Consensus
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Challenges

I Privacy preserving: Utility functions at BSs and cost functions
at APs should be kept private.

I How to address the information asymmetry?

I Concurrent update: The updating process at the BSs and APs
should be performed concurrently.

I How to get concurrency?

I Scalability: The operations at the SDN controller should be
simple to alleviate the computation burden.

I How to design a scalable scheme?
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Proximal Jacobian ADMM

The Lagrangian function

Lρ(x, y,λ) =
A∑

a=1

La(ya)−
B∑

b=1

Ub(xb) +
A∑

a=1

B∑
b=1

λab(xba − yab) +
ρ

2

A∑
a=1

B∑
b=1

‖xba − yab‖22.

Base Station Update:

xk+1
b = argmin

xb

−Ub(xb) +
ρ

2

A∑
a=1

‖xba − y k
ab +

λk
ab

ρ
‖22 +

1

2
‖xb − xk

b‖2Pi
.

Access Point Update:

yk+1
a = argmin

yb

(La(ya) +
ρ

2

B∑
b=1

‖yab − xk
ba −

λk
ab

ρ
‖22 +

1

2
‖ya − yk

a‖
2
Pi
),

s.t
B∑

b=1

yab ≤ Ca.

SDN Controller Update:

λk+1
ab = λk

ab + γρ
B∑

b=1

A∑
a=1

(xk+1
ba − y k+1

ab ).
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Distributed Update Scheme

SDN Controller 

𝐱 𝐲 
𝝀 𝝀 

… 

Base Stations 

… 

Access Points 

① ① 

② ② 

① Gather: BSs and APs concurrently update 𝐱 and 𝐲, which are gathered by controller. 
 
   
② Scatter: Controller simply updates 𝝀, which are scattered to BSs and APs  
   

Figure: Distritbuted update scheme

I Iterative gather-scatter scheme (Map-reduce).

I Signaling: pkab = (ykab −
λkab
ρ ), qkba = (xkba +

λkab
ρ )
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Numerical Results

Evaluation setup: B = 5 base stations and A = {5, 10} access
points. Ca = 10Mbps

Figure: Convergence performance
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Numerical Results(Cont.)

Total market gap:
∑A

a=1

∑B
b=1(xba − yab)

Figure: Offloading gap
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Scalable service management in mobile cloud computing

Internet

Data Center

ISP
Mobile agent

(WiFi AP)

Mobile agent

(Cellular Base Station)

Mobile agent

(Cloudlet)

Wireless connection with 

random latency

Figure 4.6 An illustration of mobile cloud computing infrastructure

locate mobile service instances to reduce the latency and guarantee the service quality experienced

by their users. An illustration of mobile cloud computing infrastructure is shown in Fig. 4.6.

To efficiently manage mobile cloud services, a mobile service provider should appropriately

locate the client requests to a data center (request allocation), and select an upstream Internet service

provider (ISP) link of data center to carry on the traffic backto the client (response routing). Those

two tasks are crucial to the success of mobile cloud service,and should be managed adaptively

to variations in MCC, such as end user demands, link latency,computation costs, electricity and

bandwidth price. Nowadays, the decisions of request allocation and response mapping are handled

separately, which results in poor service performance and high cost. For example, too many client

requests may be allocated to the same data center with limited upstream link bandwidth, or a data

center may response to client requests through an expensiveISP link. The management tasks are

also computationally intensive due to the significantly large number of mobile devices and the strin-

gent response-time requirement of mobile services. Furthermore, the uncertainty in the wireless

link latency of mobile network complicates the problem.

64

Figure: An illustration of mobile cloud computing infrastructure.
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Sparse optimization for false data injection attacks
detection

Z0 is the normal temporal state measurement, A is the sparse
attack matrix.

min
Z0,A
‖Z0‖∗ + λ‖A‖1, s.t. Za = Z0 + A, (4)

where

I ‖ · ‖∗: nuclear norm. Sum of singular values of a matrix.
I ‖ · ‖1: l1norm. Sum of absolute values of matrix entries.

+

Figure: Temporal measurements illustration.
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Distributed State Estimation

A fully distributed Gauss-Newton method for state estimation in
power system.

min
xi ...xN

f (x) =
N∑
i=1

(zi − hi (xi ))>R−1i (zi − hi (xi )),

s.t. xi = . . . = xN ,

XIE et al.: FULLY DISTRIBUTED STATE ESTIMATION FOR WIDE-AREA MONITORING SYSTEMS 1157

The iterations in (11) can be written in compact form as

(12)

Here, is the vector of sensor states
(estimates.) The Laplacian matrix captures the topology of
the sensor network. We also define the matrices and as

(13)

and

(14)

We refer to the recursive estimation algorithm in (12) as
- (Modified-Coordinated State Estimation). We note

that the estimate vector sequence is random, due to the
stochasticity of . Hence, all convergence results will be proved
in an almost sure (a.s.) sense. Based on (11), the procedure of
the proposed distributed state estimation can be summarized as
follows.
Step 1) Each control area knows only its own local Jaco-

bian matrix , local measurement vector , local
covariance matrix , and time varying weight
parameters , and . The aforementioned
data will be kept at every iteration of the proposed
algorithm.

Step 2) A global observability test is conducted in a dis-
tributed manner as follows. Starting from an arbi-
trary positive semi-definite local weighted Gramian

, each local area participates in the following
update:

Then, each area obtains the normalized weighted
Gramian and
computes the rank of to check global observ-
ability. If the network is not globally observable,
observability restoration can be performed using
the method proposed in [27].

Step 3) At the 0th iteration, each area sets the initial esti-
mate vector . We note that this estimate vector
for each control area is partitioned into control
area subvectors conformally with the sets of buses
associated with the control areas. For example,
in Fig. 2, the initial estimate vector corresponding
to area can be expressed as

(15)

Fig. 2. IEEE 14-bus system.

where

and denote area and the initial voltage
phase angle at bus in the th area, respectively.
Then, each area concurrently sends its estimate
vector to the neighboring areas.

Step 4) At the first iteration, two tasks are sequentially con-
ducted using (11):
a) Computation: each area computes the es-
timate vector based on its previous
estimate vector and the communicated
estimate vectors together with

, and .
b) Communication: each area again sends its
estimate vector to the neighboring areas
for the next iteration process.

Step 5) The distributed iterations in Step 4) are repeated for
a finite number of times, say , such that the con-
trol area estimates approach the centralized least
squares estimate to within a desired level of accu-
racy. Note that the number depends on several
factors including the size of the physical network,
the sparseness of the communication graph, and the
level of accuracy desired. In practice, reasonable ap-
proximations for may be obtained through offline
training or simulations.

The following assumption on the connectivity of the inter-
area communication network is assumed:
Assumption (E.1)—Connectivity: The inter-area communi-

cation network is connected, i.e., .

Figure: Partition a power system
into several subsystems.

4. Numerical Results
A bidirectionally connected ring network composed of N = 100 agents is considered here, in
which each agent connects to exactly two other agents. The unknown system states in the
network is x̃ ∈ R3. The observation function hi(xi) at each agent i is defined as:

hi(xi) = ai(xi(1)
2 + xi(2)

2) + bixi(2) sin(xi(2) − xi(3)) + cixi(1)xi(2), (10)

where ai, bi, and ci are i.i.d. random variables follow the standard normal distribution. It is seen
that observation function hi(xi) is a nonlinear function with a quadratic term, a trigonometric
term and a cross product term. The agents in the network work cooperatively to estimate the
unknown system states x̃ in a decentralized fashion. The convergence result is depicted in Fig.
1. It is shown that the proposed algorithm is effective in the sense that after a moderate number
of iterations, the iterates converge to the optimal values. To investigate the performance of
the proposed decentralized approach at each agent, the root-mean-square error (RMSE) of the
estimate at each agent is calculated. The best RMSE (agent 2), the worst RMSE(agent 52)
and the average RMSE are described in Fig. 2. It can be seen that at each agent, the RMSE
decreases as the iteration increases. Furthermore, the convergence rate at each agent is different.

0 50 100 150 200
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1

Iterations

||x
k −

x* ||/
||x

0 −
x* ||

Figure 1. Convergence performance of the
proposed algorithm.
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Figure 2. RMSE performance of the
proposed algorithm.

5. Conclusions
We have presented a decentralized approach of GN method for NLLS on WAN. We have given
the updating rule at each agent explicitly, and investigated the local convergence of the proposed
algorithm. Numerical simulations validated the effectiveness of the proposed algorithm.
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Smart City

Air quality monitoring using big data techniques.

Figure: Taxi route. Figure: Air monitoring map

I Ultra fine particles and PM2.5 monitoring.

I Taxi-carried air monitoring sensor.

I How to infer the air quality index spatially and temporally?
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Smart Meter Data Clustering

From smart meter data, try to tell users usage behaviors

1. Housewives?

2. Commute workers?

3. Ph.D students?
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Conclusions

I A brief review of the alternating direction method of
multipliers.

I Zoomed in two applications of big data optimization in
modern communication networks.

I Security constrained optimal power flow in smart grid.
I Data offloading in software defined networks.

I Effective management and processing of ‘big data’ has the
potential to significantly improve network security and
management efficiency.
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Thanks!
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