
Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

HYBRID QUANTUM-CLASSICAL COMPUTING
FOR FUTURE NETWORK OPTIMIZATION

Lei Fan1 and Zhu Han2,
Thanks to Zhongqi Zhao1,2, Wenlu Xuan1,2, and Mingze Li1,2

Engineering Technology1 and Electrical and Computer Engineering2

Nov 28 2022

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 1 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

4 Applications

5 Conclusion and References

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 2 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

1 Motivation and Quantum Computing Basics
Quantum Computing

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

4 Applications

5 Conclusion and References

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 3 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

Quantum Computing

1 Motivation and Quantum Computing Basics
Quantum Computing

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

4 Applications

5 Conclusion and References

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 4 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

Quantum Computing

Motivation

Started in the 1980s

Feynman said, maybe we need to
use quantum mechanics in our

computers. [1]

Many years later

Quantum Computer
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal

seating plan

Total combinations:
2

When there are only 2 guests attend,

the total seating plan could be
calculated by a permutation equation

N2
seating plan = P2

2 = 2! = 2.
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal

seating plan

Total combinations:
120

There are 5 guests showed up.

The total seating plan could be
calculated by a permutation equation

N5
seating plan = P5

5 = 5! = 120.
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal

seating plan

Total combinations:
3,628,800

Now, 10 guests rush in to the party.

The total seating plan could be
calculated by a permutation equation

N10
seating plan = P10

10 = 10! = 3, 628, 800.

It is hard for us to figure out the
optimal solution from a tremendous
possible choices.
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal

seating plan

Total combinations:
3,628,800

Similar things also happen in these fields.

Life science

Manufacturing &
Logistics

Financial Services
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Quantum Computing

What is wrong in classic computing?

The classical computer has to go through every
combination in sequential to sort out the
optima.

However, quantum computer can achieve the
same in 3 steps.

1 The machine is activated by creating an equal
superposition of all 2n states.

2 The problem is encoded onto the system by
applying gates or a magnet field.

3 The machine comes to a solution by using
physical principles of interference to magnify the
amplitude (possibility) of the correct answer and
shrink the incorrect answers. Some problems
require iterating steps of 2 and 3
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Quantum Computing

What is wrong in classic computing?

Now, the Party seating plan with 10 guest will
use

log2 3628800 = 21.79 ≈ 22 qubits,

to encode the problem and computing the

correct answer in parallel.
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Quantum Computing

What is wrong in classic computing?

Quantum computers
Can

create vast multidimensional spaces to deal with

large problems,

and translate them back into what we can use,

while

classical computers
may have

difficulties
to do the same.
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Quantum Computing

Quantum Computing is Booming

Top Funded Companies
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Quantum Computing

Known Types of Quantum Computing and Their Applications and Generality.

Quantum Annealer Analog Quantum Universal Quantum

A very specialized form of
quantum computing with
unproven advantages over
other specialized forms of
conventional computing.

The most likely form of
quantum computing that

will first show true quantum
speedup over conventional

computing.

The true grand challenge in quantum
computing. It offers the potential to
be exponentially faster than tradition
computers for a number of important
applications for science and businesses.

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 9 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

Quantum Computing

Known Types of Quantum Computing and Their Applications and Generality.

Quantum Annealer Analog Quantum Universal Quantum

Difficulty ⋆ Difficulty ⋆ ⋆ ⋆ Difficulty ⋆ ⋆ ⋆ ⋆ ⋆

Application Optimization Application

Chemistry

Application

Cryptography

Sampling Searching

Quantum
Dynamics

Securing Computing

Generality Restrictive Generality Partial Generality High
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Quantum Computing

Rank of quantum processors

D-WAVE quantum annealer computer fits our problem setting the most.
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Quantum Computing

Classification

Quantum Computer

• Gate Model
• Analog Quantum Model
• Quantum Annealing

Why Quantum Annealing?
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Qubits and Quantum Operations

Superposition

• A quantum bit |ϕ⟩ = α|0⟩+ β|1⟩ in a superposition,
• ||α||2: the probability in state |0⟩
• ||β||2: the probability in state |1⟩
• ||α||2 + ||β||2 = 1
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Qubits and Quantum Operations

Tensor product and multi-qubits

• |ψ⟩ ⊗ |ϕ⟩ represents the overall state of two quantum bits.
•

|ψ⟩ ⊗ |ϕ⟩ = α00|00⟩+ α01|01⟩+ α10|10⟩+ α11|11⟩,
||α00||2 + ||α01||2 + ||α10||2 + ||α11||2 = 1.

• A general n-qubit system:
•

|Φ⟩ =
n∑

i=0

αi |i⟩ =


α0
α1
· · ·
αn−1
αn

 .

• |i⟩ is the i th computational basis of the space, and αi is the
amplitude of the i th computational basis.
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Quantum Evolution and Algorithm

Schrödinger Equation

Schrödinger Equation
• Evolution from t = 0 to t = T

• i ∂|ψ(t)⟩∂t = H(t)|ψ(t)⟩
• |ψ(t)⟩ : The actual state of the system
• H(t) : a time-dependent Hamiltonian (i.e., Kinetic Energy +

Potential Energy)
• H(t)|ϕj(t)⟩ = Ej(t)|ϕj(t)⟩
• |ϕj(t)⟩ : the j−th instantaneous eigenstate
• Ej(t) : the j−th instantaneous eigenvalue
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Quantum Evolution and Algorithm

Adiabatic Quantum Computing Overview

• A computing approach utilizing the quantum mechanics (e.g.,
superposition, entanglement).
• Prepare the system in a initial state and transform it to the

final state.
• Has the potential to speed up the computing process.
• Polynomial equivalent to circuit model
• Applications: PageRank algorithm, Quadratic Unconstrained

Binary Optimization, Machine Learning.
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Quantum Evolution and Algorithm

Adiabatic Quantum Computing Algorithm [2][3]

• 1: Encoding the solution
• 1) Encoding target solution in final state |ϕj(T )⟩, j = 0.
• 2) Encoding target function in the final eigenvalue Ej(T ).
• 3) Find the Hamiltonian H(T ) = Hfin based the encoding rules.

• 2: Prepare the initial Hamiltonian H(0) = Hini and its
eigenstates |ϕj(0)⟩, j = 0.
• 3: Prepare the time dependent Hamiltonian
H(t) = (1− f (t))Hini + f (t)Hfin,
f (0) = 0, f (1) = 1, 0 ≤ f (t) ≤ 1, fort ∈ [0,T ]. function f (t) is
at least twice differentiable.
• 4: Evolve the system from t = 0 to t = T , then observe the

final state to obtain the solution.
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Quantum Annealing

Quantum Annealing

• Annealing a Metal
• Heat the metal to a temperature
• Lower the temperature

• Simulated Annealing
• Heuristic, random search method.

• Quantum Annealing
• A relaxed QAC approach
• Work in finite temperature and in open

environments.
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Quantum Annealing

Simulated Annealing VS Quantum Annealing

• Quantum Tunneling
• Enables jumping from one classical

state to another
• Decreases likelihood of getting

stuck in a local minimum

• Width of energy barrier is
important, but height is not
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Quantum Annealing

Energy diagram in Quantum Annealing

• Initial Qubits
• Superposition at
|0⟩s and |1⟩s.
• Not yet coupled

• Qubits are
entangled
• At state of many
possible answers
• Couplers & biases
applied

• Inputs’ energy are set.
• Lowest energy is at or
closes to the optima.
• Energy → possibility
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Quantum Annealing

Ising Model

H (t) =
∑
j

hjσ
j
z +

∑
⟨i ,j⟩

Ji ,jσ
i
zσ

j
z .

Spins interact with applied (external) field

Neighboring spins interact with each other

• QA algorithm use Ising Model as its final Hamiltonian.
• σjz is the Pauli Z operator .
• Ji ,j represents the coupling strength between qubits i , j .
• hj is the local bias on qubit i .
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Quadratic Unconstrained Binary Optimization

QUBO

f (x) =
n−1∑
i=0

n−1∑
j=0

xiQi ,jxj x ∈ {0, 1}n.

These important optimization problems can be transformed into QUBO model:

• Knapsack Problems
• Assignment Problems
• Task Allocation Problems
• Capital Budgeting Problems
• . . . (NP-hard problem)

Quantum Computing:
provide an alternative method to
solve some NP-hard problems
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Quadratic Unconstrained Binary Optimization

QUBO as Ising Model

Core Idea

• Encoding the objective function f (x) as the eigenvalue of the
ground state.
• Hfin|x⟩ = f (x)|x⟩, where |x⟩ = |xn−1 . . . x0⟩
• σz |0⟩ = |0⟩, σz |1⟩ = −|1⟩
• σz |xj⟩ = (1− 2xj)|xj⟩, xj ∈ {0, 1}
• Σj

z = 1⊗n−1−j ⊗ σz ⊗ 1⊗j , for j ∈ {0, n − 1}
• Σj

z |xj⟩ = (1− 2xj)|xj⟩, x ∈ {0, 1}
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Quadratic Unconstrained Binary Optimization

Hamiltonians for QUBO

• Hini =
n−1∑
j=0

Σj
z

• Hfinal =
n−1∑
j=0

KjΣ
j
z +

n−1∑
i ,j=0
i ̸=j

JijΣ
i
zΣ

j
z + c1⊗n

• Jij =
1
4Qij for i ̸= j

• Kj = − 1
4

n−1∑
i,j=0
i ̸=j

(Qij + Qji )−
1
2
Qjj

• c = 1
4

n−1∑
i,j=0
i ̸=j

Qji +
1
2

n−1∑
0

Qjj

• Optimal objective value : eigenvalue of ground state.
• Optimal solution obtained : final ground state.
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Hybrid Quantum-classical Decomposition Framework

• Divide the mixed-integer convex problem into two parts.
• Pure integer part: solved by the quantum computer.
• Polynomial solvable continuous part: convex optimization

algorithms.

• Obtain solutions of integer variables from quantum computer.
• Generate cutting planes from classical computer.
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Mixed-integer Linear Programming

Structure of MILP

Mixed-integer Linear Programming is of:

max
x,y

c⊺x + h⊺y

s.t. Ax + Gy ≤ b,
x ∈ X, x ∈ {0, 1}n,
y ∈ Rp.

• Mixed-Integer linear Programming
(MILP) is NP-Hard.

• It can’t be solved in polynomial time
unless P = NP.

Problem type Example Problem

NP-Hard

Matrix Permanent

Turing Halting Problem

MILP

NP-Complete

Steiner Tree

Graph 3-coloring

Maximum Clique

NP
Factoring

Graph Isomorphism

P
Linear Programming

Graph Connectivity
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Benders’ Decomposition

Benders’ Decomposition Introduction

Consider a Mixed-integer Linear Programming,

max
x,y

c⊺x + h⊺y

s.t. Ax + Gy ≤ b

x ∈ X, x ∈ {0, 1}n,
y ∈ Rp

+.

zLP Replacement−−−−−−−−−−→

max
x

c⊺x + zLP(x)

s.t. x ∈ X, x ∈ {0, 1}n

We denote the value of the best choice for y by zLP(x)

zLP(x) = max
y

h⊺y

s.t. Gy ≤ b − Ax

y ∈ Rp
+.

LP Duality−−−−−−−→

zLP(x) = min
u

(b − Ax)⊺u

s.t. G⊺u ≥ h,

u ∈ Rm
+.
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Benders’ Decomposition

Benders’ Decomposition Introduction

zLP(x) = min
u

(b − Ax)⊺u

s.t. G⊺u ≥ h,

u ∈ Rm
+

max
x

c⊺x + zLP(x)

s.t. x ∈ X, x ∈ {0, 1}n

Feasible region Q does not depend on x.

Extreme points: uk , k ∈ K , zLP bounded−−−−−−−→ s.t. (b− Ax)⊺uk ≥ zLP(x),

Extreme rays: r j , j ∈ J, −−−−−→
zLP=−∞

(b− Ax)⊺rk ≥ 0,

zLP(x) ∈ R.
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Benders’ Decomposition

Benders’ Decomposition Introduction

max
x

c⊺x + zLP(x)

s.t. (b − Ax)⊺ uk ≥ zLP(x) for k ∈ K ,

(b − Ax)⊺ r j ≥ 0 for j ∈ J,

zLP(x) ∈ R, x ∈ X, x ∈ {0, 1}n .

max
x

c⊺x + zLP(x)

s.t. x ∈ X, x ∈ {0, 1}n .

feasible region Q does not depend on x.

Extreme points: uk , k ∈ K , zLP bounded−−−−−−−→ s.t. (b− Ax)⊺uk ≥ zLP(x),

Extreme rays: r j , j ∈ J, −−−−−→
zLP=−∞

(b− Ax)⊺rk ≥ 0,

zLP(x) ∈ R .
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Benders’ Decomposition

Benders’ Decomposition Introduction

max
x

c⊺x + zLP(x)

s.t. (b − Ax)⊺ uk ≥ zLP(x) for k ∈ K ,

(b − Ax)⊺ r j ≥ 0 for j ∈ J,

zLP(x) ∈ R, x ∈ X, x ∈ {0, 1}n .

zLP(x) = min
u

(b − Ax)⊺u

s.t. G⊺u ≥ h,

u ∈ Rm
+.

Replace zLP(x) with symbol t.

max
x, t

c⊺x + t

s.t. (b − Ax)⊺ uk ≥ t for k ∈ K ,

(b − Ax)⊺ r j ≥ 0 for j ∈ J,

t ∈ R, x ∈ X, x ∈ {0, 1}n .

solution x−−−−−−−−−→

←−−−−−−−−−−
Feasible region Q
Either extreme ray

or point x

min
u

(b − Ax)⊺ u

s.t. G⊺u ≥ h,

u ∈ Rm
+.
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Benders’ Decomposition

Benders’ Decomposition Algorithm:

Algorithm:
• Determine (possibly empty) initial sets K̂ of extreme

points and Ĵ of extreme rays of Q.
• Solve the (modified) master problem, the relaxation of

the Benders reformulation. Obtain solution x and
corresponding t.

• Determine zLP(x) by solving the dual of the
subproblem.

• If zLP = −∞, an extreme ray of Q has been found.
Add the extreme ray to Ĵ and return to Step 2.
(Feasibility Cuts).

• If zLP(x) < t and finite, Add the extreme point of Q
to K̂ and return to Step 2. (Optimality Cuts)

• If zLP(x) = t then x solves the original mixed integer
program (1), with optimal y equal to the solution to
the primal subproblem (2) with x = x.

max
x, t

c⊺x + t

s.t. (b− Ax)⊺ uk ≥ t for k ∈ K ,

(b− Ax)⊺ r j ≥ 0 for j ∈ J,

t ∈ R, x ∈ X, x ∈ {0, 1}n .

y

x
min

u
(b − Ax)⊺ u

s.t. G⊺u ≥ h,

u ∈ Rm
+.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders’ Decomposition (CBD)

max
x, t

c⊺x + t

s.t. (b − Ax)⊺ uk ≥ t for k ∈ K ,

(b − Ax)⊺ r j ≥ 0 for j ∈ J,

t ∈ R, x ∈ X, x ∈ {0, 1}n .

Solution x−−−−−−−−−→

←−−−−−−−−−−−
Feasible region Q
Either extreme ray

or point x

min
u

(b − Ax)⊺ u

s.t. G⊺u ≥ h,

u ∈ Rm
+.

QUBO (Quadratic Unconstrained Binary Optimization)

Qobj =
∑
i

xiQi,ixi +
∑
i

∑
i<j

Qi,jxixj .

Qobj : Upper triangular matrix xi : Binary variable

Master problem of CBD is

one step away from pure ILP
(Integer-linear programming).

The last barrier is

the scalar t.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders’ Decomposition Master Problem

max
x, t

c⊺x + t

s.t. (b− Ax)⊺ uk ≥ t, for k ∈ K ,

(b− Ax)⊺ r j ≥ 0, for j ∈ J,

t ∈ R, x ∈ X.

In order to reformulate the master problem into the QUBO formulation,

we use a binary vector w with length of M = m+ +m− +m + 1 bit(s) to replace the
continuous variable t.

t =

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+),

= t (w) .

m+ : # of bits of N part.
m : # of bits of the decimal part.

m− + 1 : # of bits of Z− part.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders’ Decomposition
Master Problem

Alternative Benders’ Decomposition
Master Problem

max
x,w

c⊺x +

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,

w ∈ W , w ∈ {0, 1}M .

−−−−−−−−−−→
t reformulation

max
x,w

c⊺x +

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,

w ∈ W , w ∈ {0, 1}M .

MILP Pure ILP

QUBO can be applied now.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition

Alternative Benders’ Decomposition Master Problem

max
x,w

c⊺x +
m+∑

i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,
w ∈W , w ∈ {0, 1}M .
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition

Hybrid Quantum-classical Benders’ Decomposition Master Problem

max
x,w

c⊺x +
m+∑

i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,
w ∈W , w ∈ {0, 1}M .
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition

Hybrid Quantum-classical Benders’ Decomposition
Master Problem

max
x,w

c⊺x +

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,

w ∈ W , w ∈ {0, 1}M .

Constraint Equivalent Penalty

x1 + x2 = 1 P (x1 + x2 − 1)2

x1 + x2 ≥ 1 P (1− x1 − x2 + x1x2)
2

x1 + x2 ≤ 1 P (x1x2)

x1 + x2 + x3 ≤ 1 P (x1x2 + x1x3 + x2x3)

Table of Common Constraint-penalty Pairs

(1) Objective Function:

c⊺x +

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

==============⇒

Qobj = x⊺diag (c) x +

m+∑
i=−m

wi+m2iwi+m −
m−∑
j=0

wj+(1+m+m+)2
jwj+(1+m+m+).
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition

Hybrid Quantum-classical Benders’
Decomposition

Master Problem

max
x,w

c⊺x +

m+∑
i=−m

2iwi+m −
m−∑
j=0

2jwj+(1+m+m+)

s.t. (b − Ax)⊺ uk ≥ t (w) , for k ∈ K̂ ,

(b − Ax)⊺ r j ≥ 0, for j ∈ Ĵ,

x ∈ X , x ∈ {0, 1}n ,

w ∈ W , w ∈ {0, 1}M .

(2) Optimality Cuts:

t(w) +
(
uk

)⊺
Ax ≤ b⊺uk , for k ∈ K̂ .

⇒Pk

t(w) +
(
uk

)⊺
Ax +

lK∑
l=−m

2l sKkl − b⊺uk


2

,

where l
J
=

⌈
log2

(
b⊺uk − min

w,x

(
t(w) +

(
uk

)⊺
Ax

))⌉

(3) Feasibility Cuts:

(
r j
)⊺

Ax ≤ b⊺r j , for j ∈ Ĵ.

⇒Pj

(
r j
)⊺

Ax +
l
J∑

l=0

2l sJkl − b⊺r j

2

,

where l
J
=

⌈
log2

(
b⊺r j −min

x

((
r j
)⊺

Ax
))⌉
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition for MILP

Hybrid Quantum-classical Benders’
Decomposition for Mixed-integer

Linear Programming

x† = {w, x},

s is the set of slack variables.

f (x′) = x′⊺QQUBOx′,

QQUBO = x⊺diag(c)x,

+

m+∑
i=−m

wi+m2iwi+m −
m−∑
j=0

wj+(1+m+m+)2
jwj+(1+m+m+),

+
∑
k∈K

Pk

t (w) +
(
uk

)⊺
Ax +

lK∑
l=−m

2l sKkl − b⊺uk


2

,

+
∑
j∈J

Pj

(
r j
)⊺

Ax +
lJ∑
l=0

2l sJkl − b⊺r j


2

.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition for MILP

Hybrid Quantum-classical Benders’
Decomposition for Mixed-integer

Linear Programming

x′ = {w, x, s},

s is the set of slack variables.

f (x′) = x′⊺QQUBOx′,

QQUBO = x⊺diag(c)x,

+

m+∑
i=−m

wi+m2iwi+m −
m−∑
j=0

wj+(1+m+m+)2
jwj+(1+m+m+),

+
∑
k∈K

Pk

t (w) +
(
uk

)⊺
Ax +

lK∑
l=−m

2l sKkl − b⊺uk


2

,

+
∑
j∈J

Pj

(
r j
)⊺

Ax +
lJ∑
l=0

2l sJkl − b⊺r j


2

.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders’ Decomposition Algorithm

Hybrid Quantum-classical Benders’
Decomposition for Mixed-integer

Linear Programming

Hybrid Quantum-classical Benders’ Decomposition
Algorithm [4] [5]

Require: Initial sets K̂ of extreme points and Ĵ of
extreme rays of Q

1: t̄ ← +∞
2: t ← −∞
3: while | t̄ − t |≥ ϵ do
4: P← Appropriate penalties numbers or arrays
5: Q ← Reformulate both objective and con-

straints in the master problem and construct the
QUBO formulation by using corresponding rules

6: x′ ← Solve the master problem by quantum
computers.

7: t̄ ← Extract w and replace the t̄ with t̄ (w)
8: zLP (x) ← Solve the sub-problem
9: t ← zLP (x)

10: if zLP (x) = −∞ then
11: An extreme ray j of Q has been found.
12: Ĵ = Ĵ ∪ {j}
13: else if zLP (x) < t̄ and t̄ ̸= +∞ then
14: An extreme point k of Q has been found.
15: K̂ = K̂ ∪ {k}
16: return t̄, x
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Result and Demonstration of HQCBDA

A =



0 0
0 0
0 0
0 0
−1 −1
−1 0
−1 0
0 −1
0 −1


, G =



1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


,

b⊺ =
[

1 1 1 1 −1 0 0 0 0
]
,

h⊺ =
[

8 9 5 6
]
, c⊺ =

[
−15 −10

]
.

D-Wave hybrid solver: using classical computation
to assist quantum annealing.
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Optimization Problems in Data Center Energy Management

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

4 Applications
Optimization Problems in Data Center Energy Management
Optimization Problems in Wireless Networks
Quantum Machine Learning

5 Conclusion and References
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Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

Data center need to manage the power well.

An inner look of a data center

A Google data center in Council Bluff, Iowa
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Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

A general picture of a data center

The detail of HVAC system in data center
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Optimization Problems in Data Center Energy Management

Problem Formulation

• 1/0 (ON/OFF) Binary Decision Variables

udis
t Battery discharging state at time t

uchr
t Battery charging state at time t

xchiller
j,t Chiller j working state at time t

xtower
j,t Cooling tower j working state at time t

• Continuous Decision Variables
pdis
t Battery discharging power at time t

pchr
t Battery charging power at time t

EB,state
t Battery status at time t

TZone
i,t Temperature in zone i of data center at time t

T sup
i,t AC Temperature in zone i of data center at time t

vvent
t Ventilation wind speed at time t
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Optimization Problems in Data Center Energy Management

Problem Formulation

The list of problem parameters, index, and sets.

Index and Set Parameters

t ∈ T The time range of the problem

i ∈ IZone The zones in the data center

j ∈ JChiller The available chiller in the data
center

j ∈ Jtower The available cooling tower in
the data center

i′ ∈ N (·) Adjacent zones of zone ·

Binary decision variable set

x =
{
udis
t , uchr

t , xchiller
j,t , xtower

j,t

}
Continuous decision variable set

y =
{
pdis
t , pchr

t , EB,state
t ,TZone

i,t ,T
sup
i,t , vvent

t

}

χi Temperature weight for zone i

ηdis
t Battery discharging efficiency

ηchr
t Battery charging efficiency

ξB Battery upper-bound capacity

ξB Battery lower-bound capacity

βsup Coefficient for cooling air-flow power rate
vsup

βvent
0 1st Coefficient for ventilation power rate

vvent

βpump
n nth Coefficient for pump power rate

βchiller
n,j nth Coefficient for chiller j power rate

βtower
n,j nth Coefficient for tower j power rate
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Optimization Problems in Data Center Energy Management

Problem Formulation

Parameters

θi,t Internal heat generation in zone i

cair The specific heat capacity of water

cwater The specific heat capacity of water

Cheat
i The heat capacity of room i

e
sup
t The eletricity consumed by supply

air-flow

EServer
t The eletricity consumed by servers

EB,state
init Battery initial power reserve

ESolar
t The eletricity produced by solar system

ṁi Air mass flow into the zone i

mchiller
j,t Mass of water that chiller j can process

mtower
j,t Mass of water that tower j can process

RZone
i′,i Resistance between i & adjacent node

i′

Tchwr The return chilled water temperature

Tchws The supply chilled water temperature

Tconwr The return condense water temperature

Tconws The supply condense water temperature

Tout
t The outside air temperature at t

TZone
i,init Zone i ’s initial temperature

T
Zone,+
i Upper-bound temperature of Zone i

T
Zone,−
i Lower-bound temperature of Zone i

T
sup,+
i Maximal AC temperature in Zone i

T
sup,−
i Minimal AC temperature in Zone i
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Optimization Problems in Data Center Energy Management

Problem Formulation

Parameters Intermediate Variables

vout The outside air flow rate at t

v return The return air flow rate at t

vsup The supply air flow rate at t

vvent The minimal ventilation wind speed

∆EB
t The change of battery power reserve

echiller
t Electricity required by chillers

Edc,in
t Grid electricity required by the data

center.

EHVAC
t Electricity required by the HVAC

e
pump
t Electricity required by pumps

etower
t Electricity required by cooling tower

event
t Electricity required by ventilation system

Lheat
t The total thermal load

mchw
t Chilled water amount required by cooling

tower

mconw
t Condense water amount required by

cooling tower
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Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model
min

udis
t , uchr

t ,pdis
t , pchr

t ,xchiller
j,t ,

xtower
j,t ,TZone

i,t ,T
sup
i,t

, vvent
t

T∑
t=0

pe,g
t edc,in

t .

The objective function: minimize the total cost of
electricity imported from the grid.

edc,in
t = EHVAC

t + EServer
t + ∆EB

t − ESolar
t , ∀t.

The sum of every energy sources and consumers

EHVAC
t = esup

t +event
t +echiller

t +epump
t +etower

t , ∀t.

The sum of every parts’ energy consumption.

∆EB
t = pchr

t η
chr − pdis

t · (η
dis)−1

, ∀t.

Battery’s (dis)charging law

EB,state
t+1 = EB,state

t + ∆EB
t , ∀t.

Battery status at time t.

ξ
B ≤ EB,state

t+1 ≤ ξB, ∀t.

Battery status requirements at time t.

EB,state
0 = EB,state

init .

Battery initial configuration
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Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

pchr
t ≤ pchr

t · uchr
t , ∀t.

The upper bound requirement of battery charging

pdis
t ≤ pdis

t · u
dis
t , ∀t.

The upper bound requirement of battery
discharging

uchr
t + udis

t ≤ 1, ∀t.

The battery cannot be in charge and discharge
mode at the same time interval

TZone
i,0 = TZone

i,init .

The initial configuration for every zone in data
center

TZone
i,t+1 = TZone

i,t +
∑

i′∈N (i)

TZone
i′,t − TZone

i,t

Cheat
i RZone

i′ i



+
ṁi c

air
p

(
T

sup
i,t − TZone

i,t

)
+ θi,t

Cheat
i

, ∀i, t.

DC RC network temperature linear state space
model

T
Zone,−
i,t ≤ TZone

i,t ≤ T
Zone,+
i,t , ∀i, t.

The upper and lower bound requirement of room
temperature.

T
sup,−
i,t ≤ T

sup
i,t ≤ T

sup,+
i,t , ∀i, t.

The upper & lower bound of room AC temperature.
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Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model
vvent
t + vout

t ≥ vvent
t , ∀t.

The minimum ventilation air flow speed

vsup
t = vout

t + v return
t , ∀t.

The air flow speed that comes out of the AC

∑
j∈Jchiller

xchiller
j,t mchiller

j,t ≥ mchw
t , ∀t.

The min capacity of chiller water that needs to
handle.

∑
j∈Jtower

xtower
j,t mtower

j,t ≥ mconw
t , ∀t.

The min capacity of condense water that needs to
handle.

Lheat
t =

Tout
t −

∑
i∈IZone

χiT
sup
i,t

 · vout
t cairp

+
∑

i∈IZone
χi

(
TZone
i,t − T

sup
i,t

)
· v return

t cairp , ∀t.

The sum of heat load in data center

mchw
t =

Lheat
t(

Tchwr
t − Tchws

t

)
· cwater

p

, ∀t.

The min amount of chiller water to take away the
heat.

mconw
t =

Lheat
t(

Tconwr
t − Tconws

t

)
· cwater

p

, ∀t.

The min amount of condense water to take away
the heat.
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Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

echiller
t =

∑
j∈Jchiller

xchiller
j,t

(
β

chiller
0,j + β

chiller
1,j mchiller

j,t

)
, ∀t.

The upper bound requirement of battery charging

etower
t =

∑
j∈Jtower

xtower
j,t

(
β

tower
0,j + β

tower
1,j mtower

j,t

)
, ∀t.

The upper bound requirement of battery
discharging

epump
t = β

pump
0 + β

pump
1 mpump

t , ∀t.

The battery cannot be in charge and discharge
mode at the same time interval

esup
t = β

supvsup
t , ∀t.

The upper bound requirement of battery charging

event
t = β

vent
0

(
vvent
t − vvent

)
, ∀t.

The upper bound requirement of battery
discharging

vvent
t ≥ vvent

, ∀t.

The battery cannot be in charge and discharge
mode at the same time interval
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Optimization Problems in Data Center Energy Management

Problem Formulation

The original problem.

min
x,y

c⊺x + h⊺y

s.t. Ax + Gy ≥ b,

Dx ≥ b′,

x ∈ X, x ∈ {0, 1}n,
y ∈ Rp

+.

zLP Replacement−−−−−−−−−−→

The master problem.

min
x

c⊺x + zLP(x)

s.t. Dx ≥ b′,

x ∈ X, x ∈ {0, 1}n .

By applying Benders’ Decomposition, we yield the sub-problem and its dual-problem.

zLP(x) = min
y

h⊺y

s.t. Gy ≥ b − Ax,

y ∈ Rp
+.

The sub-problem.

LP Duality−−−−−−−→

zLP(x) = max
u

(b − Ax)⊺u

s.t. G⊺u ≤ h,

u ∈ Rm
+.

The dual problem of the
sub-problem.
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Optimization Problems in Data Center Energy Management

DC Hybrid Quantum-classical Benders’ Decomposition Algorithm

Hybrid Quantum-classical
Benders’ Decomposition for

Mixed-integer Linear
Programming

DC Hybrid Quantum-classical Benders’ Decomposition Al-
gorithm

Require: Initial (Empty) sets of extreme points K̂ and rays
Ĵ

1: t̄ ← +∞, t ← −∞
2: while |t−t|

|t| ≥ ϵ do

3: P ← Appropriate penalties numbers or arrays
4: Q← Reformulate both objective and constraints in

master problem and construct the QUBO formulation
by using corresponding rules

5: X ′ = {x′1, x
′
2, . . . , x

′
N} ← Solve the master prob-

lem by quantum computers and get N feasible solu-
tions.

6: t ← Extract w and replace the t̄ with t (w)
7: for x ∈ X ′ do
8: zLP (x) ← Solve the sub-problem
9: t ← zLP (x)

10: if zLP (x) = −∞ then
11: An extreme ray j of Q has been found.
12: Ĵ = Ĵ ∪ {j}
13: else if zLP (x) < t̄ and t̄ ̸= +∞ then
14: An extreme point k of Q has been found.
15: K̂ = K̂ ∪ {k}
16: break
17: return t̄, x
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Optimization Problems in Data Center Energy Management

Experiment Set-up

Values for some important parameters in the algorithm.

Symbol Definition Value

m The bits assigned to decimal part 14

m+ The bits assigned to positive integer part 16

m− The bits assigned to negative integer part 0

N The number of feasible solutions selected from the
master problem

6

|T | The length of each time interval (minutes) 10

ϵ The threshold of gap between t and t 10−4
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Optimization Problems in Data Center Energy Management

Experiment Results

Iterations for different case set-up

Set-up Binary Variable # Iterations of CBD Iteration of HQCBD

Case 1

T = 3

12 84 49 46 47Jchiller = 1

Jtower = 1

Case 2

T = 3

18 62 36 35 35Jchiller = 2

Jtower = 2

Case 3

T = 3

33 117 66 74 65Jchiller = 4

Jtower = 5

Case 4

T = 4

24 217 120 125 127Jchiller = 2

Jtower = 2
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Optimization Problems in Data Center Energy Management

Experiment Results

Iterations for different case set-up
Set-up Binary Variable # Iterations of CBD Aver. iter. of

HQCBD
Progress

Case 1

T = 3

12 84 48.67 −42.06%Jchiller = 1

Jtower = 1

Case 2

T = 3

18 62 35.33 −43.01%Jchiller = 2

Jtower = 2

Case 3

T = 3

33 117 68.33 −41.60%Jchiller = 4

Jtower = 5

Case 4

T = 4

24 217 127.33 −41.32%Jchiller = 2

Jtower = 2

The hybrid quantum-classical Benders’ decompsition could save more than 40%
iterations than classical Benders decomposition.
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Experiment Results

Iteration comparison

Case 1: T = 3, Jchiller = 1, Jtower = 1 Case 2: T = 3, Jchiller = 2, Jtower = 2
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Optimization Problems in Data Center Energy Management

Experiment Results

Iteration comparison

Case 3: T = 3, Jchiller = 4, Jtower = 5 Case 4: T = 4, Jchiller = 2, Jtower = 2

The hybrid quantum-classical Benders’ decompsition takes the lead from
beginning and wins the comparison safe and sound.
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Network Function Virtualization

NFV reduces the difficulty of hardware configuration and improves the
flexibility of a network.
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Optimization Problems in Wireless Networks

Network Function Virtualization

The virtual network functions (VNFs) are implemented in virtual
machines by software and virtual environment.
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Optimization Problems in Wireless Networks

Network Function Virtualization

• Vast service chains;
• VNF scheduling problem:

how to deploy VMs to
process VNFs;
• Delay minimization;
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Optimization Problems in Wireless Networks

System Model

• All hardware is located in a data center
— Neglect the transmission delay

• Tijm: the minimum integer that is equal to or larger than (tijm/∆T ).

A NFV network A possible arrangement of service chains
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Optimization Problems in Wireless Networks

Problem Formulation

• Decision Variables
xijm equals to 1, if VM m is used to process f kij ; otherwise, equals to 0

yijmt

equals to 1, if VM m is used to process f kij in the time slot t ;

otherwise, equals to 0

zijmt

equals to 1, if VM m starts to process f kij at the beginning of the time slot t ;

otherwise, equals to 0

pijmt

equals to 1, if VM m finishes processing f kij at the beginning of the time slot t ;

otherwise, equals to 0

• Others
f kij the j th function in service i belongs to the kth type of functions

V k
ij the set of VMs which can serve f kij

Tijm the number of time slots occupied by processing f kij on VM m
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Optimization Problems in Wireless Networks

Problem Formulation

ILP Model

min
siJ

s̃ =
I∑

i=1

siJ

The objective function: minimize the total
delay of all service chains in the network.

siJ =
M∑

m=1

Tmax∑
t=1

piJmt · (t − 1) ·∆ ∀i .

Calculate the finish time of any service
chain. ∑

m∈V k
ij

xijm = 1, ∀i , j .

Any function f kij can be processed on only
one VM.

xijm =

Tmax∑
t=1

zijmt , ∀i , j ,m.

If and only if f kij is allocated to VM m, this
VM can start processing f kij at some point.

I∑
i=1

J∑
j=1

yijmt ≤ 1, ∀m, t.

Each VM can process at most one function
in one time slot.

yijmt ≤ xijm, ∀i , j ,m, t.

The relationship between xijm and yijmt .
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Optimization Problems in Wireless Networks

Problem Formulation

Tmax∑
t=1

yijmt = Tijm · xijm, ∀i , j ; m ∈ V k
ij .

Required total time Tijm for processing
function f kij must be satisfied.

zijmt + pijmt ≤ 1, ∀i , j ,m, t.
pijmt and zijmt cannot be equal to 1 at the
same time.
yijm(t−1)−yijmt+zijmt−pijmt = 0, ∀i , j ,m, t.
The logical relationship between yijmt , zijmt

and pijmt .
Tijm∑
α=1

zijm(t−α+1) ≤ yijmt , ∀i , j , t; m ∈ V k
ij .

Once the VM starts processing the
function f kij , the VM must process it for
required time.

∑
m∈V k

ij

Tmax∑
β=1

pijm(t−β+1) ≥ zi(j+1)m′t ,

∀i , j , t; m′ ∈ V k′
i(j+1).

The next function of the service chain
must be processed after the processing of
the one before it.

xijm = yijmt = zijmt = pijmt = 0,

∀i , j , t; m /∈ V k
ij .

xijm, yijmt , zijmt and pijmt must be equal to
0 if the VM cannot process the function
f kij .

∑
m∈V k

ij

Tmax∑
t=1

zijmt =
∑

m∈V k
ij

Tmax∑
t=1

pijmt = 1, ∀i , j .

For any function f kij , only one zijmt and one
pijmt can be equal to 1.
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Optimization Problems in Wireless Networks

Problem Formulation

QUBO (Quadratic Unconstrained Binary Optimization)

f (x) =
∑
i

Qi ,ixi +
∑
i

∑
i<j

Qi ,jxixj , Q:upper-diagonal matrix.

• No constraint
How to transfer the ILP model to QUBO model? [6]
• Reformulate all constraints into quadratic penalties;
• Add them to the original objective function;

Constraint Equivalent Penalty

x1 + x2 = 1 P(x1 + x2 − 1)2

x1 + x2 + x3 ≤ 1 P(x1x2 + x1x3 + x2x3)

x1 + x2 ≤ x3 P(x1 + x2 − x3 +
∑

l al rl )
2

x1 + x2 = b P(x1 + x2 − b)2

• x1, x2 and x3: binary variable
• P: penalty coefficient(large positive constant)
• rl : slack variable

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 61 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

Optimization Problems in Wireless Networks

Algorithm

Proposed Algorithm [7]

Input: parameters, I , J, M; the functions in
service chain i , f kij ; the set of VMs which
can process f kij , V k

ij ; the NFV network;
Output: s̃, xijm, yijmt , zijmt , pijmt ;

1: Set the value of Tmax : run the greedy
algorithm to get a feasible Tmax ;

2: Set the value of penalty coefficients;
3: Transform all constraints to equivalent

penalties;
4: The QUBO model: add all terms in

equivalent penalties to the right-hand
side of the objective function;

5: Embedding the QUBO model onto the
quantum annealing hardware;

6: return s̃, xijm, yijmt , zijmt , pijmt ;

— Find a reasonable Tmax

— Reduce the number of variables
• The greedy algorithm: rearrange

all VNFs in service chains to a
service chain

— Solve the problem with more
variables
• D-Wave hybrid solver: use

classical computation to assist
quantum annealing
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Study Case Results

Case Parameters Matrix Q Size Average QPU
Access Time (s)

Average Solver
Run Time (s)

Success Rate

a I = 2, J = 2,M = 2 (272, 272) 0.065 2.993 100%

b I = 3, J = 2,M = 2 (675, 675) 0.065 2.997 64%

c I = 2, J = 3,M = 2 (600, 600) 0.063 2.998 36%

d I = 2, J = 2,M = 3 (462, 462) 0.061 2.994 100%

e I = 3, J = 3,M = 2 (1191, 1191) 0.064 2.997 58%

f I = 3, J = 3,M = 3 (1303, 1303) 0.063 3.630 4%

• Spending a much longer time on finding a feasible solution for case f ;
• For case f , the success rate is very low (because of too many variables);
• Matrix Q size increases — the difficulty of finding the optimal solution increases.
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Quantum Machine Learning

Quantum Machine Learning

+ ⇒Machine Learning Quantum
Computing QML

Classical learning
technicues facing
complex tasks

Quadradic speed-up

• Quantum Machine
Learning

• Machine learning and
fast

• Not only fast
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Quantum Machine Learning

Feature Selection

Need for feature selection

With feature selection, we can optimize our model in some way

• Huge data to train
• Relevant feature
• Irrelevant feature
• Redundant feature

Set of features

Select best features

Learning algorithm

Evaluate

• Prevent overfitting
• Improve accuracy
• Reduce training time

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 66 / 81



Mtv. & QC Bas. AQC HQCD Applications Con. & Refs.

Quantum Machine Learning

BILP Model

Objective function: maximize relevant feature
while minimizing redundant feature [8]

min
x

 1− α

k(k − 1)/2

∑
i

∑
j<i

I
(
fi , fj

)
xi xj −

α

k

∑
i

I (fi , y) xi

 , ∀i, j ∈ S.

number of feature

bias "influence"

independence

x : decision variable

Many Constraints

∑
xi = Kj , ∀i ∈ Sj j ∈ {1, . . . , z} .

Set K is decided by a wrapper
method
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Quantum Machine Learning

Constraints

∑
i∈Cg

xi ≤ 1, ∀Cg ∈ C.

Some are conflict

Feature in Cg

may have the
same

information,and
are selected at

most once

Some rely on
others

xi − xj ≤ 0, ∀(i , j) ∈ E.

∑
xi = T , ∀i ∈ D.

Some are essential and have priority
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Quantum Machine Learning

Reformulate to QUBO

I (fi , fj) I (fi , y)

Qij = (1− α) I (fi , fj )

Qii = αk · I (fi , y)

Q Table Map to D-wave

• Similarity between features → Qij

• Similarity between features and labels → Qii
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Quantum Machine Learning

Algorithm and Experiments

Dataset

Data Preprocessing

Figure Analysis

Select best α

Update Parameters

Optimization Model
• Pearson
• Mutual Information
• Distance Correlation

Quantum Annealing

Feature Subsets

Classification Terminate?

Evaluation Yes

No

• Pearson

p =
Cov (X ,Y )√
D(X )

√
D(Y )

• y = +1 indicates that X and Y are
totally positively correlated.

• y = 0 implies that X is not correlated
to Y at all.

• Mutual Information:

I (x ; y) =
n∑

i=1

n∑
j=1

p(xi , yj ) log

(
p(xi , yj )

p(xi )p(yj )

)

Mutual information is zero when x and y are
statistically independent.
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Quantum Machine Learning

Algorithm and Experiments

In order to search the best α before feature
selection we proposed an algorithm.

Algorithm for searching α 1. Given the information
matrix I, find the α that maximize the accuracy of
classification method SVC(x)

Input: I: Common information matrix.
s: step size.

Output: α: weight balance parameter.
1: α ← 0.05;
2: m_acc ← 0;
3: acc ← SVC(α, I);
4: while α < 1 do
5: if m_acc < acc then
6: m_acc ← acc;
7: α ← α;
8: α ← α + s;
9: acc ← SVC(α, I);

10: return α.

QUBO feature selection with weight balance
parameter

α is to balance 2 factors on the two plates

1This part could be done by classical solvers or quantum annealers.
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Quantum Machine Learning

Search the Best K
Algorithm: Search the best K

Input: T2,K3,I4,α5,m6

Output: The final set K∗

1: x∗ ← QFS(K, α, I);
2: Max_acc ← SVC(x∗);
3: K∗ ← K;
4: while iteration < m do
5: if sum(K∗) ≤ T then
6: for Ki ∈ K∗ do
7: K∗

i := Ki + 1;
8: x∗i ← QFS(K∗

i , α, I);
9: Update x∗ by x∗i ;

10: accuracy a ← SVC(x∗);
11: Insert a to vector A.
12: if Max(A) > Max_acc then
13: Max_acc ← Max(A);
14: Update K∗.
15: if sum(K∗) > T then
16: for Ki ∈ K∗ do
17: K∗

i := Ki − 1;
18: x∗i ← QFS(K∗

i , α, I);
19: Update x∗ by x∗i ;
20: accuracy a ← SVC(x∗) ;
21: Insert a to vector A.
22: if Max(A) > Max_acc then
23: Max_acc ← Max(A);
24: Update K∗.
25: return K∗.

m: max iteration. K: Set of initial
parameters.

I: Information matrix. α: weight balance
parameter.

T : Number of total selected features.

Sometimes the number of features is too large and D-wave
can’t handle it. We divide it into small subsets.

Total Set

Subset 1

x: selected features

Subset 2

K1 K∗
1 x∗2

K∗
2

K2

x∗1

After subset 1 calculation, x = x∗1 ∩ x2 ∩ . . . ∩ xp
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Evaluation Method

Relevant Not Relevant

Retrieved True Positives (TP) False Positives (FP)

Not Retrieved True Negatives (TN) False Negaitives (FP)

accuracy = TP+TN
TP+FP+TN+FN

.
Accuracy is the percentage of

accurately predicted samples to all
samples that were forecasted

precision = TP
TP+FP

.
Precision is the capability of a

classification model to identify only the
relevant data points.

recall = TP
TP+FN

.
Detection estimates the ability of a

model to discover all the relevant data
points.
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Quantum Machine Learning

Experiments and Results

Accuracy on different algorithms Precision on different algorithms Recall on different algorithms

Control Group:

HHO: Harris hawk optimization (2019)

SSA: Salp swarm algorithm (2017)

WOA: Whale optimization algorithm (2016)

PSO: Particle swarm optimization (2018)

Our result is at least comparable to other
algorithms.

The recall is low for R2L attacks because
the sample size is small and we did not
train a separate model for it.
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Quantum Machine Learning

Experiments and Results

Feature selection and detection time of different algorithms

• Selection time: Time spent removing irrelevant and redundant features.
• Detection time: Time spent training the model with the selected features.
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The Summary of the Experiment

• For the evaluation methods accuracy, precision, and call, our
QFS’s performance is comparable with other classical
algorithms
• Compared with other classical algorithms, the QFS algorithm

can find the optimal solution at a higher speed while
maintaining accuracy. At the same time, the QFS algorithm
removes redundant features, which considerably increases the
detection speed.
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