HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Lei Fan¹ and Zhu Han², Thanks to Zhongqi Zhao^{1,2}, Wenlu Xuan^{1,2}, and Mingze Li^{1,2}

Engineering Technology 1 and Electrical and Computer ${\sf Engineering}^2$

Nov 28 2022

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

1 Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- **3** Hybrid Quantum-classical Computing
- 4 Applications
- **5** Conclusion and References

Motivation and Quantum Computing Basics Quantum Computing

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing
- 4 Applications
- **5** Conclusion and References

Quantum Computing

Motivation and Quantum Computing Basics Quantum Computing

- 2 Adiabatic Quantum Computing
- 8 Hybrid Quantum-classical Computing
- Applications
- **5** Conclusion and References

Quantum Computing

Motivation

Started in the 1980s

Feynman said, maybe we need to use quantum mechanics in our computers. [1]

Many years later

Quantum Computer

Quantum Computing

What is wrong in classic computing?

Dinner Party But with only **ONE** optimal seating plan

Total combinations: 2

When there are only 2 guests attend,

the total seating plan could be calculated by a permutation equation

$$N_{\text{seating plan}}^2 = P_2^2 = 2! = 2.$$

Quantum Computing

What is wrong in classic computing?

Dinner Party But with only **ONE** optimal seating plan

Total combinations: 120

There are 5 guests showed up.

The total seating plan could be calculated by a permutation equation

$$N_{\text{seating plan}}^5 = P_5^5 = 5! = 120.$$

Quantum Computing

What is wrong in classic computing?

Dinner Party But with only **ONE** optimal seating plan

Total combinations: 3,628,800

Now, 10 guests rush in to the party.

The total seating plan could be calculated by a permutation equation

$$N_{\text{seating plan}}^{10} = P_{10}^{10} = 10! = 3,628,800.$$

It is hard for us to figure out the optimal solution from a tremendous possible choices.

Quantum Computing

What is wrong in classic computing?

Similar things also happen in these fields.

Dinner Party But with only **ONE** optimal seating plan

Total combinations: 3,628,800

Manufacturing & Logistics

Financial Services

Quantum Computing

What is wrong in classic computing?

The classical computer has to go through every combination in sequential to sort out the optima.

However, quantum computer can achieve the same in 3 steps.

- The machine is activated by creating an equal superposition of all 2ⁿ states.
- 2 The problem is encoded onto the system by applying gates or a magnet field.
- 3 The machine comes to a solution by using physical principles of interference to magnify the amplitude (possibility) of the correct answer and shrink the incorrect answers. Some problems require iterating steps of 2 and 3

Quantum Computing

What is wrong in classic computing?

Now, the Party seating plan with 10 guest will use

 $\log_2 3628800 = 21.79 \approx 22$ qubits,

to encode the problem and computing the correct answer in parallel.

Quantum Computing

What is wrong in classic computing?

Quantum computers

create vast multidimensional spaces to deal with large problems,

and translate them back into what we can use,

while classical computers may have difficulties

to do the same.

Quantum Computing

Quantum Computing is Booming

Top Funded Companies

Quantum Computing

Quantum Computing is Booming

Top Funded Companies

æ

イロト イボト イヨト イヨト

Quantum Computing

Known Types of Quantum Computing and Their Applications and Generality.

Quantum Annealer

A very specialized form of quantum computing with unproven advantages over other specialized forms of conventional computing.

Analog Quantum

The most likely form of quantum computing that will first show true quantum speedup over conventional computing.

Universal Quantum

The true grand challenge in quantum computing. It offers the potential to be exponentially faster than tradition computers for a number of important applications for science and businesses.

Quantum Computing

Known Types of Quantum Computing and Their Applications and Generality.

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

э

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Computing

Rank of quantum processors

Annealing quantum processors

(人間) トイヨト イヨト

D-WAVE quantum annealer computer fits our problem setting the most.

э

Quantum Computing

Classification

Why Quantum Annealing?

Quantum Computer

- Gate Model
- Analog Quantum Model
- Quantum Annealing

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

Qubits and Quantum Operations Quantum Evolution and Algorithm Quantum Annealing Quadratic Unconstrained Binary Optimization (QUBO)

B Hybrid Quantum-classical Computing

Applications

Qubits and Quantum Operations

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing Qubits and Quantum Operations

Quantum Evolution and Algorithm Quantum Annealing Quadratic Unconstrained Binary Optimization (QUBO)

- 8 Hybrid Quantum-classical Computing
- Applications

Qubits and Quantum Operations

Superposition

- A quantum bit $|\phi\rangle=\alpha|\mathbf{0}\rangle+\beta|\mathbf{1}\rangle$ in a superposition,
- $||\alpha||^2$: the probability in state $|0\rangle$
- $||\beta||^2:$ the probability in state $|1\rangle$
- $||\alpha||^2 + ||\beta||^2 = 1$

伺 と く ヨ と く ヨ と

Qubits and Quantum Operations

Tensor product and multi-qubits

• $|\psi\rangle\otimes|\phi\rangle$ represents the overall state of two quantum bits.

$$\begin{split} |\psi\rangle \otimes |\phi\rangle &= \alpha_{00}|00\rangle + \alpha_{01}|01\rangle + \alpha_{10}|10\rangle + \alpha_{11}|11\rangle, \\ ||\alpha_{00}||^2 + ||\alpha_{01}||^2 + ||\alpha_{10}||^2 + ||\alpha_{11}||^2 = 1. \end{split}$$

• A general *n*-qubit system:

$$|\Phi\rangle = \sum_{i=0}^{n} \alpha_{i} |i\rangle = \begin{pmatrix} \alpha_{0} \\ \alpha_{1} \\ \cdots \\ \alpha_{n-1} \\ \alpha_{n} \end{pmatrix}$$

 |i⟩ is the ith computational basis of the space, and α_i is the amplitude of the ith computational basis.
 Mtv. & QC Bas.
 AQC
 HQCD
 Applications
 Con. & Refs.

Quantum Evolution and Algorithm

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing Qubits and Quantum Operations Quantum Evolution and Algorithm Quantum Annealing Quadratic Unconstrained Binary Optimization (QUBO)

- B Hybrid Quantum-classical Computing
- Applications
- **5** Conclusion and References

Quantum Evolution and Algorithm

Schrödinger Equation

Schrödinger Equation

• Evolution from t = 0 to t = T

•
$$i \frac{\partial |\psi(t)\rangle}{\partial t} = H(t) |\psi(t)\rangle$$

- $|\psi(t)
 angle$: The actual state of the system
- H(t): a time-dependent Hamiltonian (i.e., Kinetic Energy + Potential Energy)
- $H(t)|\phi_j(t)\rangle = E_j(t)|\phi_j(t)\rangle$
- $|\phi_j(t)\rangle$: the *j*-th instantaneous eigenstate
- $E_j(t)$: the *j*-th instantaneous eigenvalue

Quantum Evolution and Algorithm

Adiabatic Quantum Computing Overview

- A computing approach utilizing the quantum mechanics (e.g., superposition, entanglement).
- Prepare the system in a initial state and transform it to the final state.
- Has the potential to speed up the computing process.
- Polynomial equivalent to circuit model
- Applications: PageRank algorithm, Quadratic Unconstrained Binary Optimization, Machine Learning.

Quantum Evolution and Algorithm

Adiabatic Quantum Computing Algorithm [2][3]

- 1: Encoding the solution
 - 1) Encoding target solution in final state $|\phi_j(T)\rangle, j = 0$.
 - 2) Encoding target function in the final eigenvalue E_j(T).
 - 3) Find the Hamiltonian $H(T) = H_{fin}$ based the encoding rules.
- 2: Prepare the initial Hamiltonian H(0) = H_{ini} and its eigenstates |φ_j(0)⟩, j = 0.
- 3: Prepare the time dependent Hamiltonian $H(t) = (1 - f(t))H_{ini} + f(t)H_{fin},$ $f(0) = 0, f(1) = 1, 0 \le f(t) \le 1, \text{ fort } \in [0, T].$ function f(t) is at least twice differentiable.
- 4: Evolve the system from t = 0 to t = T, then observe the final state to obtain the solution.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Quantum Annealing

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing Qubits and Quantum Operations Quantum Evolution and Algorithm Quantum Annealing Quadratic Unconstrained Binary Optimization (QUB)

- B Hybrid Quantum-classical Computing
- Applications

Quantum Annealing

Quantum Annealing

- Annealing a Metal
 - Heat the metal to a temperature
 - Lower the temperature
- Simulated Annealing
 - Heuristic, random search method.
- Quantum Annealing
 - A relaxed QAC approach
 - Work in finite temperature and in open environments.

Quantum Annealing

Simulated Annealing VS Quantum Annealing

- Quantum Tunneling
- Enables jumping from one classical state to another
 - Decreases likelihood of getting stuck in a local minimum
- Width of energy barrier is important, but height is not

Quantum Annealing

Energy diagram in Quantum Annealing

Quantum Annealing

Ising Model

 $H(t) = \sum_{j}^{j} h_{j}\sigma_{z}^{j} + \sum_{\langle i,j\rangle}^{j} J_{i,j}\sigma_{z}^{i}\sigma_{z}^{j}.$

- QA algorithm use Ising Model as its final Hamiltonian.
- σ_z^j is the Pauli Z operator .
- J_{i,j} represents the coupling strength between qubits *i*, *j*.
- *h_i* is the local bias on qubit *i*.

 Mtv. & QC Bas.
 AQC
 HQCD
 Applications
 Con. & Refs.

Quadratic Unconstrained Binary Optimization

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

Qubits and Quantum Operations Quantum Evolution and Algorithm Quantum Annealing

Quadratic Unconstrained Binary Optimization (QUBO)

- B Hybrid Quantum-classical Computing
- Applications

Quadratic Unconstrained Binary Optimization

QUBO

$$f(\mathbf{x}) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} x_i Q_{i,j} x_j \quad \mathbf{x} \in \{0,1\}^n.$$

These important optimization problems can be transformed into QUBO model:

- Knapsack Problems
- Assignment Problems
- Task Allocation Problems
- Capital Budgeting Problems
- ... (NP-hard problem)

Quantum Computing: provide an alternative method to solve some NP-hard problems

Quadratic Unconstrained Binary Optimization

QUBO as Ising Model

Core Idea

- Encoding the objective function f(x) as the eigenvalue of the ground state.
- $H_{fin}|x
 angle=f(x)|x
 angle$, where $|x
 angle=|x_{n-1}\dots x_0
 angle$

•
$$\sigma_z |0\rangle = |0\rangle$$
, $\sigma_z |1\rangle = -|1\rangle$

- $\sigma_z |x_j\rangle = (1 2x_j)|x_j\rangle, x_j \in \{0, 1\}$
- $\Sigma_z^j = 1^{\otimes n-1-j} \otimes \sigma_z \otimes 1^{\otimes j}$, for $j \in \{0, n-1\}$
- $\Sigma_z^j |x_j\rangle = (1-2x_j)|x_j\rangle, x \in \{0,1\}$

伺下 イヨト イヨト

Quadratic Unconstrained Binary Optimization

Hamiltonians for QUBO

•
$$H_{\text{ini}} = \sum_{j=0}^{n-1} \Sigma_z^j$$

• $H_{\text{final}} = \sum_{j=0}^{n-1} K_j \Sigma_z^j + \sum_{\substack{i,j=0\\i\neq j}}^{n-1} J_{ij} \Sigma_z^i \Sigma_z^j + c 1^{\otimes n}$
• $J_{ij} = \frac{1}{4} Q_{ij} \text{ for } i \neq j$
• $K_j = -\frac{1}{4} \sum_{\substack{i,j=0\\i\neq j}}^{n-1} (Q_{ij} + Q_{ji}) - \frac{1}{2} Q_{jj}$
• $c = \frac{1}{4} \sum_{\substack{i,j=0\\i\neq j}}^{n-1} Q_{ji} + \frac{1}{2} \sum_{0}^{n-1} Q_{jj}$

- Optimal objective value : eigenvalue of ground state.
- Optimal solution obtained : final ground state.

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

Hybrid Quantum-classical Decomposition Framework Mixed-integer Linear Programming (MILP) Benders' Decomposition Hybrid Quantum-classical BD for MILP

4 Applications

5 Conclusion and References
Hybrid Quantum-classical Decomposition Framework

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing Hybrid Quantum-classical Decomposition Framework Mixed-integer Linear Programming (MILP) Benders' Decomposition Hybrid Quantum-classical BD for MILP

4 Applications

5 Conclusion and References

Hybrid Quantum-classical Decomposition Framework

- Divide the mixed-integer convex problem into two parts.
 - Pure integer part: solved by the quantum computer.
 - Polynomial solvable continuous part: convex optimization algorithms.
- Obtain solutions of integer variables from quantum computer.
- Generate cutting planes from classical computer.

Mixed-integer Linear Programming

1 Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing Hybrid Quantum-classical Decomposition Framework Mixed-integer Linear Programming (MILP) Benders' Decomposition Hybrid Quantum-classical BD for MILP

4 Applications

Mixed-integer Linear Programming

Structure of MILP

Mixed-integer Linear Programming is of:

$$\begin{split} \max_{x,y} & c^\mathsf{T} x + h^\mathsf{T} y \\ \text{s.t. } & A x + G y \leq b, \\ & x \in X, x \in \{0,1\}^n \\ & y \in \mathbb{R}^\rho. \end{split}$$

- Mixed-Integer linear Programming (MILP) is NP-Hard.
- It can't be solved in polynomial time unless P = NP.

Problem type	Example Problem
	Matrix Permanent
NP-Hard	Turing Halting Problem
	MILP
	Steiner Tree
NP-Complete	Graph 3-coloring
	Maximum Clique
ND	Factoring
INF	Graph Isomorphism
D	Linear Programming
F	Graph Connectivity

・ 同 ト ・ ヨ ト ・ ヨ ト

,

Benders' Decomposition

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

Hybrid Quantum-classical Decomposition Framework Mixed-integer Linear Programming (MILP) Benders' Decomposition Hybrid Quantum-classical BD for MILP

Applications

Benders' Decomposition

Benders' Decomposition Introduction

Consider a Mixed-integer Linear Programming,

$$\begin{array}{ll} \max_{\mathbf{x},\mathbf{y}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + \mathbf{h}^{\mathsf{T}}\mathbf{y} & \max_{\mathbf{x}} \mathbf{c}^{\mathsf{T}}\mathbf{x} + z_{LP}(\mathbf{x}) \\ \text{s.t.} & \mathsf{A}\mathbf{x} + \mathsf{G}\mathbf{y} \leq \mathbf{b} & \underset{\mathbf{x} \in \mathsf{X}, \mathbf{x} \in \{0,1\}^n, \\ & \mathbf{y} \in \mathbb{R}^p_+. \end{array} \xrightarrow{z_{LP} \text{ Replacement}} & \text{s.t.} & \mathbf{x} \in \mathsf{X}, \mathbf{x} \in \{0,1\}^n \end{array}$$

We denote the value of the best choice for y by $z_{LP}(x)$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Benders' Decomposition

Benders' Decomposition Introduction

$$\begin{aligned} z_{LP}(\mathbf{x}) &= \min_{\mathbf{u}} (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \mathbf{u} & \max_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}} \mathbf{x} + z_{LP}(\mathbf{x}) \\ \text{s.t. } \mathbf{G}^{\mathsf{T}} \mathbf{u} &\geq \mathbf{h}, & \text{s.t. } \mathbf{x} \in \mathbf{X}, \ \mathbf{x} \in \{0, 1\}^n \\ \mathbf{u} \in \mathbb{R}_+^m \end{aligned}$$

Feasible region Q does not depend on x.

Benders' Decomposition

Benders' Decomposition Introduction

$$\begin{aligned} \max_{\mathbf{x}} \quad \mathbf{c}^{\mathsf{T}}\mathbf{x} + z_{LP}(\mathbf{x}) \\ \text{s.t.} \quad (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \ u^k \geq z_{LP}(\mathbf{x}) \quad \text{for } k \in K, \\ (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \ r^j \geq \mathbf{0} \quad \text{for } j \in J, \\ z_{LP}(\mathbf{x}) \in \mathbb{R}, \ \mathbf{x} \in \mathbf{X}, \ \mathbf{x} \in \{\mathbf{0}, 1\}^n. \end{aligned}$$

$$\begin{array}{ll} \max_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}}\mathbf{x} + z_{LP}(\mathbf{x}) \\ \text{s.t.} & \mathbf{x} \in \mathsf{X}, \ \mathbf{x} \in \{0,1\}^{n} \,. \end{array}$$

feasible region Q does not depend on x.

Benders' Decomposition

Benders' Decomposition Introduction

$$\begin{array}{ll} \max_{\mathbf{x}} & \mathbf{c}^{\mathsf{T}}\mathbf{x} + z_{LP}(\mathbf{x}) \\ \text{s.t.} & (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \ u^k \geq z_{LP}(\mathbf{x}) & \text{for } k \in K, \\ & (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \ r^j \geq 0 & \text{for } j \in J, \\ & z_{LP}(\mathbf{x}) \in \mathbb{R}, \ \mathbf{x} \in \mathbf{X}, \ \mathbf{x} \in \{0, 1\}^n \,. \end{array}$$

$$\begin{aligned} z_{LP}(\mathsf{x}) &= \min_{\mathsf{u}} (\mathsf{b} - \mathsf{A}\mathsf{x})^\mathsf{T}\mathsf{u} \\ \mathsf{s.t.} \ \mathsf{G}^\mathsf{T}\mathsf{u} &\geq \mathsf{h}, \\ \mathsf{u} \in \mathbb{R}^m_+. \end{aligned}$$

Replace $z_{LP}(x)$ with symbol t.

$\max_{x, t}$	$c^{T}x+t$	$\xrightarrow{\text{solution } \times}$	min	$(b - Ax)^{\intercal} u$
s.t.	$(b - Ax)^{T} u^k \ge t \text{ for } k \in K,$	/	s.t.	$G^\intercal u \geq h,$
	$(b - Ax)^{T} r^j \ge 0 \text{ for } j \in J,$	Feasible region Q Either extreme ray		$u \in \mathbb{R}^m_+.$
	$t\in\mathbb{R},\; imes\inX,\; imes\in\{0,1\}^n$.	or point x		

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

 Mtv. & QC Bas.
 AQC
 HQCD
 Applications
 Con. & Refs.

Benders' Decomposition

Benders' Decomposition Algorithm:

Algorithm:

- Determine (possibly empty) initial sets K of extreme points and Ĵ of extreme rays of Q.
- Solve the (modified) master problem, the relaxation of the Benders reformulation. Obtain solution x and corresponding t.
- Determine z_{LP}(x̄) by solving the dual of the subproblem.
- If $\overline{z}_{LP} = -\infty$, an extreme ray of Q has been found. Add the extreme ray to \hat{J} and return to Step 2. (Feasibility Cuts).
- If z_{LP}(x̄) < t̄ and finite, Add the extreme point of Q to K̂ and return to Step 2. (Optimality Cuts)
- If z_{LP}(x̄) = t̄ then x̄ solves the original mixed integer program (1), with optimal y equal to the solution to the primal subproblem (2) with x = x̄.

$$\begin{split} \max_{\mathbf{x}, t} \quad \mathbf{c}^\mathsf{T} \mathbf{x} + t \\ \text{s.t.} \quad (\mathbf{b} - \mathbf{A}\mathbf{x})^\mathsf{T} \ u^k \geq t \quad \text{for } k \in \mathcal{K}, \\ (\mathbf{b} - \mathbf{A}\mathbf{x})^\mathsf{T} \ r^j \geq \mathbf{0} \quad \text{for } j \in J, \\ t \in \mathbb{R}, \ \mathbf{x} \in \mathbf{X}, \ \mathbf{x} \in \{\mathbf{0}, \mathbf{1}\}^n \,. \end{split}$$

$$\begin{split} \min_{u} & (b-Ax)^{\mathsf{T}} \, u \\ \mathrm{s.t.} & \mathsf{G}^{\mathsf{T}} u \geq h, \\ & u \in \mathbb{R}^{m}_{+}. \end{split}$$

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Motivation and Quantum Computing Basics

2 Adiabatic Quantum Computing

3 Hybrid Quantum-classical Computing

Hybrid Quantum-classical Decomposition Framework Mixed-integer Linear Programming (MILP) Benders' Decomposition Hybrid Quantum-classical BD for MILP

Applications

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders' Decomposition to QUBO

Classical Benders' Decomposition (CBD)

$$\begin{array}{ll} \max_{\mathbf{x}, t} & \mathbf{c}^{\mathsf{T}}\mathbf{x} + t & & & & & \\ \text{s.t.} & (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} u^k \geq t & \text{for } k \in K, \\ & (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} r^j \geq 0 & \text{for } j \in J, \\ & t \in \mathbb{R}, \ \mathbf{x} \in \mathbf{X}, \ \mathbf{x} \in \{0, 1\}^n. \end{array} \xrightarrow[]{\text{Feasible region } \mathbf{Q}}_{\text{Either extreme ray } or \text{point } \mathbf{x}}$$

QUBO (Quadratic Unconstrained Binary Optimization)

$$\mathsf{Q}_{\rm obj} = \sum_i x_i \mathsf{Q}_{i,i} x_i + \sum_i \sum_{i < j} \mathsf{Q}_{i,j} x_i x_j.$$

 Q_{obj} : Upper triangular matrix x_i : Binary variable

Master problem of CBD is

 $\begin{array}{ll} \min_{\mathbf{u}} & (\mathbf{b} - \mathbf{A}\mathbf{x})^{\mathsf{T}} \, \mathbf{u} \\ \mathrm{s.t.} & \mathsf{G}^{\mathsf{T}} \mathbf{u} \geq \mathbf{h}, \\ & \mathbf{u} \in \mathbb{R}^{m}_{+}. \end{array}$

one step away from pure ILP (Integer-linear programming). The last barrier is

the scalar
$${m l}$$
 .

< 同 > < 回 > < 回 >

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders' Decomposition to QUBO

Classical Benders' Decomposition Master Problem

 $\begin{array}{ll} \max_{\mathbf{x}, t} & \mathbf{c}^{\mathsf{T}}\mathbf{x} + t \\ \text{s.t.} & (\mathbf{b} - \mathsf{A}\mathbf{x})^{\mathsf{T}} \ u^k \geq t, & \text{for } k \in K, \\ & (\mathbf{b} - \mathsf{A}\mathbf{x})^{\mathsf{T}} \ r^j \geq 0, & \text{for } j \in J, \\ & t \in \mathbb{R}, \ \mathbf{x} \in \mathsf{X}. \end{array}$

In order to reformulate the master problem into the QUBO formulation,

we use a **binary** vector w with length of $M = \overline{m}_+ + \overline{m}_- + \underline{m} + 1$ bit(s) to replace the continuous variable *t*.

・ 同 ト ・ ヨ ト ・ ヨ ト

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders' Decomposition to QUBO

Classical Benders' Decomposition Master Problem

$$\begin{array}{l} \max_{\mathbf{x},\mathbf{w}} \quad c^{\mathsf{T}}\mathbf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=\mathbf{0}}^{\overline{m}_{-}} 2^{j} w_{j+\left(\mathbf{1}+\underline{m}+\overline{m}_{+}\right)} \\ \text{s.t.} \quad (b-A\mathbf{x})^{\mathsf{T}} \ u^{k} \geq \overline{t} \left(\mathbf{w}\right), \quad \text{for } k \in \hat{K}, \\ (b-A\mathbf{x})^{\mathsf{T}} \ r^{j} \geq 0, \quad \text{for } j \in \hat{J}, \\ \mathbf{x} \in X, \quad \mathbf{x} \in \{0, \mathbf{1}\}^{n}, \\ \mathbf{w} \in W, \quad \mathbf{w} \in \{0, \mathbf{1}\}^{M}. \end{array}$$

Alternative Benders' Decomposition Master Problem

$$\begin{split} & \max_{\mathbf{x},\mathbf{w}} \quad c^{\mathsf{T}}\mathbf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j} w_{j+(1+\underline{m}+\overline{m}_{+})} \\ & \text{s.t.} \quad (b - A\mathbf{x})^{\mathsf{T}} \ u^{k} \geq \overline{\mathfrak{r}} \left(\mathbf{w} \right), \quad \text{for } k \in \hat{K}, \\ & (b - A\mathbf{x})^{\mathsf{T}} \ r^{j} \geq \mathbf{0}, \quad \text{for } j \in \hat{J}, \\ & \mathbf{x} \in X, \quad \mathbf{x} \in \{0, 1\}^{n}, \\ & \mathbf{w} \in W, \quad \mathbf{w} \in \{0, 1\}^{M}. \end{split}$$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

MILP

Pure ILP

QUBO can be applied now.

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Alternative Benders' Decomposition Master Problem

$$\begin{split} \max_{\mathbf{x},\mathbf{w}} \quad c^{\mathsf{T}}\mathbf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j} w_{j+(1+\underline{m}+\overline{m}_{+})} \\ \text{s.t.} \quad (b - A\mathbf{x})^{\mathsf{T}} u^{k} \geq \overline{t} (\mathbf{w}), \quad \text{for } k \in \hat{K}, \\ (b - A\mathbf{x})^{\mathsf{T}} r^{j} \geq 0, \quad \text{for } j \in \hat{J}, \\ \mathbf{x} \in X, \quad \mathbf{x} \in \{0, 1\}^{n}, \\ \mathbf{w} \in W, \quad \mathbf{w} \in \{0, 1\}^{M}. \end{split}$$

∃ → (=)

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Hybrid Quantum-classical Benders' Decomposition Master Problem

$$\max_{\mathbf{x},\mathbf{w}} \quad c^{\mathsf{T}}\mathbf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j} w_{j+(1+\underline{m}+\overline{m}_{+})}$$
s.t. $(b - A\mathbf{x})^{\mathsf{T}} u^{k} \ge \overline{t} (\mathbf{w}), \quad \text{for } k \in \hat{K},$
 $(b - A\mathbf{x})^{\mathsf{T}} r^{j} \ge 0, \quad \text{for } j \in \hat{J},$
 $\mathbf{x} \in X, \quad \mathbf{x} \in \{0, 1\}^{n},$
 $\mathbf{w} \in W, \quad \mathbf{w} \in \{0, 1\}^{M}.$

)

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Hybrid Quantum-classical Benders' Decomposition Master Problem

$$\begin{split} \max_{\mathbf{x},\mathbf{w}} & c^{\mathsf{T}}\mathbf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})} \\ \text{s.t.} & (b - A\mathbf{x})^{\mathsf{T}} u^{k} \geq \overline{\iota}(\mathbf{w}), \quad \text{for } k \in \hat{K}, \\ & (b - A\mathbf{x})^{\mathsf{T}} r^{j} \geq \mathbf{0}, \quad \text{for } j \in \hat{J}, \\ & \mathbf{x} \in X, \quad \mathbf{x} \in \{\mathbf{0}, \mathbf{1}\}^{n}, \\ & \mathbf{w} \in W, \quad \mathbf{w} \in \{\mathbf{0}, \mathbf{1}\}^{M}. \end{split}$$

Constraint	Equivalent Penalty
$x_1 + x_2 = 1$	$P(x_1 + x_2 - 1)^2$
$x_1 + x_2 \ge 1$	$P(1 - x_1 - x_2 + x_1x_2)^2$
$x_1 + x_2 \le 1$	$P(x_1x_2)$
$x_1 + x_2 + x_3 \le 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$

Table of Common Constraint-penalty Pairs

(1) Objective Function:

$$c^{\mathsf{T}} \mathsf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})}$$

$$=======$$

$$Q_{obj} = \mathsf{x}^{\mathsf{T}} \operatorname{diag}(c) \mathsf{x} + \sum_{i=-\underline{m}}^{\overline{m}_{+}} w_{i+\underline{m}} 2^{i} w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})} 2^{j} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})} \cdot$$

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

w

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

(2) Optimality Cuts:

Hybrid Quantum-classical Benders'
Decomposition
Master Problem

$$\max_{x,w} \quad c^{\mathsf{T}}x + \sum_{i=-\underline{m}}^{\overline{m}_{+}} 2^{i}w_{i+\underline{m}} - \sum_{j=0}^{\overline{m}_{-}} 2^{j}w_{j+(1+\underline{m}+\overline{m}_{+})}$$
s.t. $(b - Ax)^{\mathsf{T}} u^{k} \ge \overline{t} (w)$, for $k \in \hat{K}$,
 $(b - Ax)^{\mathsf{T}} r^{j} \ge 0$, for $j \in \hat{J}$,
 $x \in X$, $x \in \{0, 1\}^{n}$,
 $w \in W$, $w \in \{0, 1\}^{M}$.

$$\begin{split} \bar{\mathfrak{t}}(\mathsf{w}) + \left(u^{k}\right)^{\mathsf{T}} \mathsf{A}\mathsf{x} &\leq b^{\mathsf{T}} u^{k}, \text{ for } k \in \hat{\mathcal{K}}. \\ \Rightarrow P_{k} \left(\bar{\mathfrak{t}}(\mathsf{w}) + \left(u^{k}\right)^{\mathsf{T}} \mathsf{A}\mathsf{x} + \sum_{l=-\underline{m}}^{\overline{l}K} 2^{l} s_{kl}^{K} - b^{\mathsf{T}} u^{k}\right)^{\mathsf{2}}, \\ \text{here } \bar{\mathfrak{l}}^{J} = \left\lceil \log_{\mathsf{2}} \left(b^{\mathsf{T}} u^{k} - \min_{\mathsf{w},\mathsf{x}} \left(\bar{\mathfrak{t}}(\mathsf{w}) + \left(u^{k}\right)^{\mathsf{T}} \mathsf{A}\mathsf{x}\right)\right) \right\rceil \end{split}$$

(3) Feasibility Cuts:

$$\begin{pmatrix} r^{j} \end{pmatrix}^{\mathsf{T}} A_{\mathsf{X}} \leq b^{\mathsf{T}} r^{j}, \quad \text{for } j \in \hat{J}.$$

$$\Rightarrow P_{j} \left(\left(r^{j} \right)^{\mathsf{T}} A_{\mathsf{X}} + \sum_{l=0}^{\tilde{l}^{J}} 2^{l} s_{kl}^{J} - b^{\mathsf{T}} r^{j} \right)^{2},$$
where $\bar{l}^{J} = \left\lceil \log_{2} \left(b^{\mathsf{T}} r^{j} - \min_{\mathsf{X}} \left(\left(r^{j} \right)^{\mathsf{T}} A_{\mathsf{X}} \right) \right) \right\rceil$

() <) <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <)
 () <

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition for MILP

Hybrid Quantum-classical Benders' Decomposition for Mixed-integer Linear Programming

NP-hard Integer Variables Master Problem

s is the set of slack variables.

$$f(\mathbf{x}') = \mathbf{x}'^{\mathsf{T}} \mathbf{Q}_{\text{QUBO}} \mathbf{x}',$$

$$\begin{aligned} &P_{\mathbf{QUBO}} = \mathbf{x}^{\mathsf{T}} \operatorname{diag}(c) \mathbf{x}, \\ &+ \sum_{i=-\underline{m}}^{\overline{m}_{+}} \mathbf{w}_{i+\underline{m}} 2^{i} \mathbf{w}_{i+\underline{m}} - \sum_{j=\mathbf{0}}^{\overline{m}_{-}} \mathbf{w}_{j+\left(\mathbf{1}+\underline{m}+\overline{m}_{+}\right)} 2^{j} \mathbf{w}_{j+\left(\mathbf{1}+\underline{m}+\overline{m}_{+}\right)}, \\ &+ \sum_{k \in K} P_{k} \left(\overline{\tau} \left(\mathbf{w} \right) + \left(u^{k} \right)^{\mathsf{T}} A \mathbf{x} + \sum_{l=-\underline{m}}^{\overline{j}K} 2^{l} s_{kl}^{K} - b^{\mathsf{T}} u^{k} \right)^{2}, \\ &+ \sum_{j \in J} P_{j} \left(\left(r^{j} \right)^{\mathsf{T}} A \mathbf{x} + \sum_{l=\mathbf{0}}^{\overline{j}J} 2^{l} s_{kl}^{J} - b^{\mathsf{T}} r^{j} \right)^{2}. \end{aligned}$$

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition for MILP

Hybrid Quantum-classical Benders' Decomposition for Mixed-integer Linear Programming

NP-hard Integer Variables Master Problem

$$x'=\{w,x,s\},$$

s is the set of slack variables.

$$f(\mathbf{x}') = \mathbf{x}'^{\mathsf{T}} \mathsf{Q}_{\text{QUBO}} \mathbf{x}',$$

$$\begin{aligned} \mathbf{QUBO} &= \mathbf{x}^{\mathsf{T}} \operatorname{diag}(c) \mathbf{x}, \\ &+ \sum_{i=-\underline{m}}^{\overline{m}_{+}} w_{i+\underline{m}} 2^{j} w_{i+\underline{m}} - \sum_{j=\mathbf{0}}^{\overline{m}_{-}} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})} 2^{j} w_{j+(\mathbf{1}+\underline{m}+\overline{m}_{+})}, \\ &+ \sum_{k \in K} P_{k} \left(\overline{\tau} \left(\mathbf{w} \right) + \left(u^{k} \right)^{\mathsf{T}} A \mathbf{x} + \sum_{l=-\underline{m}}^{\overline{j}K} 2^{l} s_{kl}^{K} - b^{\mathsf{T}} u^{k} \right)^{2}, \\ &+ \sum_{j \in J} P_{j} \left(\left(r^{j} \right)^{\mathsf{T}} A \mathbf{x} + \sum_{l=\mathbf{0}}^{\overline{j}J} 2^{l} s_{kl}^{J} - b^{\mathsf{T}} r^{j} \right)^{2}. \end{aligned}$$

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition Algorithm

Hybrid Quantum-classical Benders' Decomposition for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition Algorithm [4] [5]

Require: Initial sets \hat{K} of extreme points and \hat{J} of extreme rays of Q

- $\mathbf{1}: \ \overline{t} \ \leftarrow \ +\infty$
- 2: $\underline{t} \leftarrow -\infty$
- 3: while $|\bar{t} \underline{t}| \ge \epsilon$ do
- 4: P ← Appropriate penalties numbers or arrays
- Q ← Reformulate both objective and constraints in the master problem and construct the QUBO formulation by using corresponding rules
- 6: x' ← Solve the master problem by quantum computers.
- 7: $\overline{t} \leftarrow \text{Extract } w \text{ and replace the } \overline{t} \text{ with } \overline{t} (w)$
- 8: $z_{LP}(x) \leftarrow$ Solve the sub-problem

9:
$$\underline{t} \leftarrow z_{LP}(\mathbf{x})$$

- 10: if $z_{LP}(x) = -\infty$ then
- 11: An extreme ray j of Q has been found.

12:
$$\hat{J} = \hat{J} \cup \{j\}$$

- 13: else if $z_{LP}(x) < \overline{t}$ and $\overline{t} \neq +\infty$ then
- 14: An extreme point k of Q has been found.
- $15: \qquad \hat{K} = \hat{K} \cup \{k\}$
- 16: return \overline{t} , x

Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Result and Demonstration of HQCBDA

$$A = \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ -1 & -1 \\ -1 & 0 \\ 0 & -1 \end{bmatrix}, G = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$
$$b^{\mathsf{T}} = \begin{bmatrix} 1 & 1 & 1 & 1 & -1 & 0 & 0 & 0 & 0 \end{bmatrix},$$
$$h^{\mathsf{T}} = \begin{bmatrix} 8 & 9 & 5 & 6 \end{bmatrix}, \quad c^{\mathsf{T}} = \begin{bmatrix} -15 & -10 \end{bmatrix}$$

D-Wave hybrid solver: using classical computation to assist quantum annealing.

・ロト ・同ト ・ヨト ・ヨト

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing

4 Applications

Optimization Problems in Data Center Energy Management Optimization Problems in Wireless Networks Quantum Machine Learning

6 Conclusion and References

Optimization Problems in Data Center Energy Management

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing

4 Applications

Optimization Problems in Data Center Energy Management Optimization Problems in Wireless Networks Quantum Machine Learning

5 Conclusion and References

Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

Data center need to manage the power well.

An inner look of a data center

A Google data center in Council Bluff, Iowa

Data centers use more eletricity than entire countries

Domestic eletricity consumption of selected countries vs. data centers in 2020 in TWh

・ロト ・同ト ・ヨト ・ヨト

Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

A general picture of a data center

The detail of HVAC system in data center

Optimization Problems in Data Center Energy Management

Problem Formulation

• 1/0 (ON/OFF) Binary Decision Variables

u_t^{dis}	Battery discharging state at time t
u_t^{chr}	Battery charging state at time t
$x_{j,t}^{chiller}$	Chiller j working state at time t
$x_{j,t}^{\mathbf{tower}}$	Cooling tower j working state at time t

Continuous Decision Variables

$p_t^{\sf dis}$	Battery discharging power at time t
p_t^{chr}	Battery charging power at time t
$E_t^{B,state}$	Battery status at time t
$T_{i,t}^{\text{Zone}}$	Temperature in zone <i>i</i> of data center at time <i>t</i>
$T_{i,t}^{sup}$	AC Temperature in zone i of data center at time t
v_t^{vent}	Ventilation wind speed at time t

- ∢ ≣ →

Optimization Problems in Data Center Energy Management

Problem Formulation

The list of problem parameters, index, and sets.

Index and Set

$t \in T$	The time range of the problem	
$i \in I^{Zone}$	The zones in the data center	
$j \in J^{Chiller}$	The available chiller in the data center	
$j \in J^{tower}$	The available cooling tower in the data center	
$i' \in \mathcal{N}(\cdot)$	Adjacent zones of zone ·	

Binary decision variable set
$x = \left\{ u_t^{dis}, u_t^{chr}, x_{j,t}^{chiller}, x_{j,t}^{tower} \right\}$
Continuous decision variable set
$y = \left\{ p_t^{dis}, p_t^{chr}, E_t^{B,state}, \mathcal{T}_{i,t}^{Zone}, \mathcal{T}_{i,t}^{sup}, v_t^{vent} \right\}$

Parameters

χi	Temperature weight for zone <i>i</i>
η_t^{dis}	Battery discharging efficiency
η_t^{chr}	Battery charging efficiency
<u>ξ</u> B	Battery upper-bound capacity
$\overline{\xi^{\mathbf{B}}}$	Battery lower-bound capacity
β^{sup}	Coefficient for cooling air-flow power rate $v^{{\rm sup}}$
β_0^{vent}	1st Coefficient for ventilation power rate v^{vent}
β_n^{pump}	nth Coefficient for pump power rate
$\beta_{n,j}^{chiller}$	nth Coefficient for chiller j power rate
$\boldsymbol{\beta}_{n,j}^{\text{tower}}$	<i>n</i> th Coefficient for tower <i>j</i> power rate

Optimization Problems in Data Center Energy Management

Problem Formulation

Parameters

$\theta_{i,t}$	Internal heat generation in zone <i>i</i>
c ^{air}	The specific heat capacity of water
c ^{water}	The specific heat capacity of water
C_i^{heat}	The heat capacity of room <i>i</i>
$e_t^{\mathbf{sup}}$	The eletricity consumed by supply air-flow
E_t^{Server}	The eletricity consumed by servers
$E_{init}^{\mathbf{B}, \mathbf{state}}$	Battery initial power reserve
$E_t^{\mathbf{Solar}}$	The eletricity produced by solar system
<i>m</i> i	Air mass flow into the zone <i>i</i>
$m_{j,t}^{chiller}$	Mass of water that chiller j can process
$m_{j,t}^{\mathbf{tower}}$	Mass of water that tower j can process

$R_{i',i}^{\mathbf{Zone}}$	Resistance between <i>i</i> & adjacent node <i>i</i> '
T ^{chwr}	The return chilled water temperature
T^{chws}	The supply chilled water temperature
T ^{conwr}	The return condense water temperature
T ^{conws}	The supply condense water temperature
T_t^{out}	The outside air temperature at t
$T_{i,init}^{Zone}$	Zone <i>i</i> 's initial temperature
$T_i^{Zone,+}$	Upper-bound temperature of Zone <i>i</i>
$T_i^{\mathbf{Zone},-}$	Lower-bound temperature of Zone <i>i</i>
$T_i^{sup,+}$	Maximal AC temperature in Zone <i>i</i>
$T_i^{sup,-}$	Minimal AC temperature in Zone i

・ロト ・部ト ・ヨト ・ヨト

Optimization Problems in Data Center Energy Management

Problem Formulation

Parameters

v ^{out}	The outside air flow rate at t
v ^{return}	The return air flow rate at t
v ^{sup}	The supply air flow rate at t
<u>v</u> vent	The minimal ventilation wind speed

Intermediate Variables

$\Delta E_t^{\mathbf{B}}$	The change of battery power reserve
$e_t^{chiller}$	Electricity required by chillers
Et ^{dc,in}	Grid electricity required by the data center.
E_t^{HVAC}	Electricity required by the HVAC
e_t^{pump}	Electricity required by pumps
e_t^{tower}	Electricity required by cooling tower
e_t^{vent}	Electricity required by ventilation system
L_t^{heat}	The total thermal load
m _t chw	Chilled water amount required by cooling tower
m _t conw	Condense water amount required by cooling tower

Optimization Problems in Data Center Energy Management

Problem Formulation

The objective function: minimize the total cost of electricity imported from the grid.

$$e_t^{\mathsf{dc,in}} = E_t^{\mathsf{HVAC}} + E_t^{\mathsf{Server}} + \Delta E_t^{\mathsf{B}} - E_t^{\mathsf{Solar}}, \ \forall t.$$

The sum of every energy sources and consumers

$$E_t^{\text{HVAC}} = e_t^{\text{sup}} + e_t^{\text{vent}} + e_t^{\text{chiller}} + e_t^{\text{pump}} + e_t^{\text{tower}}, \ \forall t.$$

The sum of every parts' energy consumption.

$$\Delta E_t^{\mathbf{B}} = p_t^{\mathsf{chr}} \eta^{\mathsf{chr}} - p_t^{\mathsf{dis}} \cdot (\eta^{\mathsf{dis}})^{-1}, \ \forall t.$$

Battery's (dis)charging law

$$E_{t+1}^{\mathbf{B}, \mathbf{state}} = E_t^{\mathbf{B}, \mathbf{state}} + \Delta E_t^{\mathbf{B}}, \ \forall t.$$

Battery status at time t.

$$\underline{\xi^{\mathbf{B}}} \leq E_{t+1}^{\mathbf{B}, \text{state}} \leq \overline{\xi^{\mathbf{B}}}, \forall t.$$

Battery status requirements at time t.

$$E_0^{B,state} = E_{init}^{B,state}$$
.

・ロト ・同ト ・ヨト ・ヨト

Battery initial configuration

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

$$p_t^{\mathsf{chr}} \leq \overline{p_t^{\mathsf{chr}}} \cdot u_t^{\mathsf{chr}}, \ \forall t.$$

The upper bound requirement of battery charging

$$p_t^{\mathsf{dis}} \leq \overline{p_t^{\mathsf{dis}}} \cdot u_t^{\mathsf{dis}}, \ \forall t$$

The upper bound requirement of battery discharging

$$u_t^{\mathsf{chr}} + u_t^{\mathsf{dis}} \leq \mathbf{1}, \ \forall t$$

The battery cannot be in charge and discharge mode at the same time interval

$$T_{i,0}^{\text{Zone}} = T_{i,\text{init}}^{\text{Zone}}$$

The initial configuration for every zone in data center

$$\begin{split} T^{\text{Zone}}_{i,t+1} &= T^{\text{Zone}}_{i,t} + \sum_{i' \in \mathcal{N}(i)} \left(\frac{T^{\text{Zone}}_{i',t} - T^{\text{Zone}}_{i,t}}{C^{\text{heat}}_i R^{\text{Zone}}_{i'}} \right) \\ &+ \frac{\dot{m}_i c^{\text{sir}}_p \left(T^{\text{sup}}_{i,t} - T^{\text{Zone}}_{i,t} \right) + \theta_{i,t}}{C^{\text{heat}}}, \; \forall i,t. \end{split}$$

DC RC network temperature linear state space model

$$T_{i,t}^{\mathsf{Zone},-} \leq T_{i,t}^{\mathsf{Zone}} \leq T_{i,t}^{\mathsf{Zone},+}, \ \forall i,t.$$

The upper and lower bound requirement of room temperature.

$$T_{i,t}^{\sup,-} \leq T_{i,t}^{\sup} \leq T_{i,t}^{\sup,+}, \ \forall i,t.$$

The upper & lower bound of room AC temperature.

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

3

Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

$$v_t^{\text{vent}} + v_t^{\text{out}} \ge \underline{v}_t^{\text{vent}}, \ \forall t.$$

The minimum ventilation air flow speed

$$v_t^{sup} = v_t^{out} + v_t^{return}, \ \forall t.$$

The air flow speed that comes out of the AC

$$\sum_{j \in \mathsf{J}\mathsf{chiller}} x_{j,t}^{\mathsf{chiller}} \ m_{j,t}^{\mathsf{chiller}} \ \geq m_t^{\mathsf{chw}} \ , \ \forall t.$$

The min capacity of chiller water that needs to handle.

$$\sum_{j \in \mathbf{J^{tower}}} \ \mathbf{x}_{j,t}^{\mathbf{tower}} \ \mathbf{m}_{j,t}^{\mathbf{tower}} \ \geq \mathbf{m}_{t}^{\mathbf{conw}} \ , \ \forall t.$$

The min capacity of condense water that needs to handle.

$$\begin{split} \mathcal{L}_{t}^{\text{heat}} &= \left(\mathcal{T}_{t}^{\text{out}} - \sum_{i \in \mathbf{I} \text{Zone}} \chi_{i} \mathcal{T}_{i,t}^{\text{sup}}\right) \cdot \mathbf{v}_{t}^{\text{out}} c_{\rho}^{\text{air}} \\ &+ \sum_{i \in \mathbf{I} \text{Zone}} \chi_{i} \left(\mathcal{T}_{i,t}^{\text{Zone}} - \mathcal{T}_{i,t}^{\text{sup}}\right) \cdot \mathbf{v}_{t}^{\text{return}} c_{\rho}^{\text{air}} \text{, } \forall t. \end{split}$$

The sum of heat load in data center

$$m_t^{\mathsf{chw}} = \frac{L_t^{\mathsf{heat}}}{\left(T_t^{\mathsf{chwr}} - T_t^{\mathsf{chws}}\right) \cdot c_p^{\mathsf{water}}}, \ \forall t.$$

The min amount of chiller water to take away the heat.

$$m_t^{\text{conw}} = \frac{L_t^{\text{heat}}}{\left(T_t^{\text{conwr}} - T_t^{\text{conws}}\right) \cdot c_p^{\text{water}}}, \ \forall t.$$

The min amount of condense water to take away the heat.

2

Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

$$e_t^{\text{chiller}} = \sum_{j \in \text{Jchiller}} x_{j,t}^{\text{chiller}} \left(\beta_{\mathbf{0},j}^{\text{chiller}} + \beta_{\mathbf{1},j}^{\text{chiller}} m_{j,t}^{\text{chiller}} \right), \forall t.$$

$$e_t^{\mathsf{vent}} = \beta_0^{\mathsf{vent}} \left(v_t^{\mathsf{vent}} - \underline{v}^{\mathsf{vent}} \right), \ \forall t$$

 $e_{t}^{sup} = \beta^{sup} v_{t}^{sup}, \forall t.$

The upper bound requirement of battery discharging

$$v_t^{\text{vent}} \ge \underline{v}^{\text{vent}}, \ \forall t.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

The battery cannot be in charge and discharge mode at the same time interval

$$e_{t}^{\text{tower}} = \sum_{j \in \text{Jtower}} x_{j,t}^{\text{tower}} \left(\beta_{\mathbf{0},j}^{\text{tower}} + \beta_{\mathbf{1},j}^{\text{tower}} m_{j,t}^{\text{tower}} \right), \ \forall t.$$

The upper bound requirement of battery discharging

$$e_t^{\mathsf{pump}} = \beta_0^{\mathsf{pump}} + \beta_1^{\mathsf{pump}} m_t^{\mathsf{pump}}, \ \forall t.$$

The battery cannot be in charge and discharge mode at the same time interval

Optimization Problems in Data Center Energy Management

Problem Formulation

The original problem.

The master problem.

$$\begin{array}{ll} \min_{x,y} c^{\mathsf{T}} x + h^{\mathsf{T}} y & \min_{x} c^{\mathsf{T}} x + z_{LP}(x) \\ \text{s.t. } Ax + Gy \ge b, & z_{LP} \text{ Replacement} \\ Dx \ge b', & \text{s.t. } Dx \ge b', \\ x \in X, x \in \{0,1\}^n, & y \in \mathbb{R}^p_+. \end{array}$$

By applying Benders' Decomposition, we yield the sub-problem and its dual-problem.

$$\begin{aligned} z_{LP}(\mathsf{x}) &= \min_{\mathsf{y}} \quad \mathsf{h}^\mathsf{T}\mathsf{y} & z_{LP}(\mathsf{x}) &= \max_{\mathsf{u}} (\mathsf{b} - \mathsf{A}\mathsf{x})^\mathsf{T}\mathsf{u} \\ \text{s.t.} \quad \mathsf{G}\mathsf{y} &\geq \mathsf{b} - \mathsf{A}\mathsf{x}, & \\ & \mathsf{y} \in \mathbb{R}^p_+. & \xrightarrow{\mathsf{LP} \text{ Duality}} & \mathsf{u} \in \mathbb{R}^m_+. \end{aligned}$$

The dual problem of the sub-problem.

イロト イポト イヨト イヨト

The sub-problem.

Optimization Problems in Data Center Energy Management

DC Hybrid Quantum-classical Benders' Decomposition Algorithm

Hybrid Quantum-classical Benders' Decomposition for Mixed-integer Linear Programming

DC Hybrid Quantum-classical Benders' Decomposition Algorithm

Require: Initial (Empty) sets of extreme points \hat{K} and rays 1: $\overline{t} \leftarrow +\infty, t \leftarrow -\infty$ 2: while $\frac{|\bar{t}-\underline{t}|}{|\bar{\tau}|} \ge \epsilon$ do 3. P ← Appropriate penalties numbers or arrays Δ٠ master problem and construct the QUBO formulation by using corresponding rules $X' = \{x'_1, x'_2, \dots, x'_N\} \leftarrow$ Solve the master prob-5. lem by quantum computers and get N feasible solutions. 6: $\overline{t} \leftarrow \mathsf{Extract} \ \mathsf{w} \ \mathsf{and} \ \mathsf{replace} \ \mathsf{the} \ \overline{t} \ \mathsf{with} \ \overline{t} \ (\mathsf{w})$ for $x \in X'$ do 7: $z_{IP}(x) \leftarrow$ Solve the sub-problem 8: ٩· $t \leftarrow z_{IP}(x)$ 10: if $z_{IP}(\mathbf{x}) = -\infty$ then 11: An extreme ray *j* of *Q* has been found. 12. $\hat{J} = \hat{J} \cup \{j\}$ 13: else if $z_{IP}(x) < \overline{t}$ and $\overline{t} \neq +\infty$ then 14: An extreme point k of Q has been found. $\hat{K} = \hat{K} \cup \{k\}$ 15: 16. break 17: return \overline{t} , x
Optimization Problems in Data Center Energy Management

Experiment Set-up

Values for some important parameters in the algorithm.

Symbol	Definition	Value
<u>m</u>	The bits assigned to decimal part	14
\overline{m}_+	The bits assigned to positive integer part	16
\overline{m}_{-}	The bits assigned to negative integer part	0
N	The number of feasible solutions selected from the master problem	6
T	The length of each time interval (minutes)	10
ϵ	The threshold of gap between \overline{t} and \underline{t}	10 ⁻⁴

(人間) トイヨト イヨト

Optimization Problems in Data Center Energy Management

Experiment Results

Iterations for different case set-up

	Set-up	Binary Variable #	Iterations of CBD	Iterati	on of HO	QCBD
Case 1	T = 3 $\int^{chiller} = 1$ $\int^{tower} = 1$	12	84	49	46	47
Case 2	T = 3 $\int^{chiller} = 2$ $\int^{tower} = 2$	18	62	36	35	35
Case 3	T = 3 $\int^{chiller} = 4$ $\int^{tower} = 5$	33	117	66	74	65
Case 4	T = 4 $\int^{chiller} = 2$ $\int^{tower} = 2$	24	217	120	125	127

・ 同 ト ・ ヨ ト ・ ヨ ト

Optimization Problems in Data Center Energy Management

Experiment Results

Iterations for different case set-up

	Set-up	Binary Variable #	Iterations of CBD	Aver. iter. of HQCBD	Progress
Case 1	T = 3 $\int^{chiller} = 1$ $\int^{tower} = 1$	12	84	48.67	-42.06%
Case 2	T = 3 $\int^{chiller} = 2$ $\int^{tower} = 2$	18	62	35.33	-43.01%
Case 3	T = 3 $\int^{chiller} = 4$ $\int^{tower} = 5$	33	117	68.33	-41.60%
Case 4	T = 4 $\int^{chiller} = 2$ $\int^{tower} = 2$	24	217	127.33	-41.32%

The hybrid quantum-classical Benders' decomposition could save more than 40% iterations than classical Benders decomposition.

・ロト ・同ト ・ヨト ・ヨト

Optimization Problems in Data Center Energy Management

Experiment Results

Iteration comparison

-∢ ≣ →

Optimization Problems in Data Center Energy Management

Experiment Results

Iteration comparison

The hybrid quantum-classical Benders' decompsition takes the lead from beginning and wins the comparison safe and sound.

31.5

Optimization Problems in Wireless Networks

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing

4 Applications

Optimization Problems in Data Center Energy Management Optimization Problems in Wireless Networks Quantum Machine Learning

6 Conclusion and References

Optimization Problems in Wireless Networks

Network Function Virtualization

Traditional Network Appliances

Network Function Virtualization

NFV reduces the difficulty of hardware configuration and improves the flexibility of a network.

B 5

Optimization Problems in Wireless Networks

Network Function Virtualization

The virtual network functions (VNFs) are implemented in virtual machines by software and virtual environment.

イロト イボト イヨト イヨト

Optimization Problems in Wireless Networks

Network Function Virtualization

- Vast service chains;
- VNF scheduling problem: how to deploy VMs to process VNFs;
- Delay minimization;

Optimization Problems in Wireless Networks

System Model

- All hardware is located in a data center
 - Neglect the transmission delay
- T_{ijm} : the minimum integer that is equal to or larger than $(t_{ijm}/\Delta T)$.

A NFV network

A possible arrangement of service chains

・ 同 ト ・ ヨ ト ・ ヨ ト

Optimization Problems in Wireless Networks

Problem Formulation

Decision Variables

x _{ijm}	equals to 1, if VM m is used to process f_{ij}^k ; otherwise, equals to 0
Ma	equals to 1, if VM m is used to process f_{ij}^k in the time slot t ;
Уijmt	otherwise, equals to 0
Zijmt	equals to 1, if VM m starts to process f_{ij}^k at the beginning of the time slot t ;
	otherwise, equals to 0
D	equals to 1, if VM m finishes processing f_{ij}^k at the beginning of the time slot t ;
Pijmt	otherwise, equals to 0

• Others

f _{ij} ^k	the j^{th} function in service <i>i</i> belongs to the k^{th} type of functions
V_{ij}^k	the set of VMs which can serve f_{ij}^k
T _{ijm}	the number of time slots occupied by processing f_{ij}^k on VM m

3

イロト イヨト イヨト イヨト

Optimization Problems in Wireless Networks

Problem Formulation

ILP

Model

$$\min_{s_{ij}} \quad \tilde{s} = \sum_{i=1}^{l} s_{ij}$$

The objective function: minimize the total delay of all service chains in the network.

$$s_{iJ} = \sum_{m=1}^{M} \sum_{t=1}^{T_{max}} p_{iJmt} \cdot (t-1) \cdot \Delta \quad \forall i.$$

Calculate the finish time of any service chain.

$$\sum_{m \in V_{ij}^k} x_{ijm} = 1, \quad \forall i, j.$$

Any function f_{ij}^k can be processed on only one VM.

$$x_{ijm} = \sum_{t=1}^{T_{max}} z_{ijmt}, \quad \forall i, j, m.$$

If and only if f_{ij}^k is allocated to VM *m*, this VM can start processing f_{ii}^k at some point.

$$\sum_{i=1}^{l}\sum_{j=1}^{J}y_{ijmt} \leq 1, \quad \forall m, t.$$

Each VM can process at most one function in one time slot.

$$y_{ijmt} \leq x_{ijm}, \quad \forall i, j, m, t.$$

The relationship between x_{ijm} and y_{ijmt} .

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Optimization Problems in Wireless Networks

Problem Formulation

$$\sum_{t=1}^{T_{max}} y_{ijmt} = T_{ijm} \cdot x_{ijm}, \quad \forall i, j; \quad m \in V_{ij}^k.$$

Required total time T_{ijm} for processing function f_{ii}^k must be satisfied.

 $z_{ijmt} + p_{ijmt} \leq 1, \quad \forall i, j, m, t.$

 p_{ijmt} and z_{ijmt} cannot be equal to 1 at the same time.

$$y_{ijm(t-1)} - y_{ijmt} + z_{ijmt} - p_{ijmt} = 0, \quad \forall i, j, m, t.$$

The logical relationship between y_{ijmt} , z_{ijmt}
and p_{ijmt} .

$$\sum_{\alpha=1}^{T_{ijm}} z_{ijm(t-\alpha+1)} \leq y_{ijmt}, \quad \forall i, j, t; \quad m \in V_{ij}^k.$$

Once the VM starts processing the function f_{ij}^k , the VM must process it for required time.

$$\sum_{m \in V_{ij}^k} \sum_{\beta=1}^{T_{max}} p_{ijm(t-\beta+1)} \ge z_{i(j+1)m't},$$
$$\forall i, j, t; \quad m' \in V_{i(j+1)}^{k'}.$$

The next function of the service chain must be processed after the processing of the one before it.

$$\begin{aligned} x_{ijm} &= y_{ijmt} = z_{ijmt} = \rho_{ijmt} = 0, \\ \forall i, j, t; \quad m \notin V_{ij}^k. \end{aligned}$$

 x_{ijm} , y_{ijmt} , z_{ijmt} and p_{ijmt} must be equal to 0 if the VM cannot process the function f_{ij}^k .

 $\sum_{\substack{m \in V_{ij}^k \\ \text{For any function } f_{ij}^k, \text{ only one } z_{ijmt}} \sum_{\substack{m \in V_{ij}^k \\ t=1}}^{T_{max}} p_{ijmt} = 1, \quad \forall i, j.$

Optimization Problems in Wireless Networks

Problem Formulation

QUBO (Quadratic Unconstrained Binary Optimization)

$$f(x) = \sum_{i} Q_{i,i}x_i + \sum_{i} \sum_{i < j} Q_{i,j}x_ix_j, \quad Q: upper-diagonal matrix.$$
• No constraint

How to transfer the ILP model to QUBO model? [6]

- Reformulate all constraints into quadratic penalties;
- Add them to the original objective function;

Constraint	Equivalent Penalty
$x_1 + x_2 = 1$	$P(x_1 + x_2 - 1)^2$
$x_1 + x_2 + x_3 \le 1$	$P(x_1x_2 + x_1x_3 + x_2x_3)$
$x_1 + x_2 \le x_3$	$P(x_1 + x_2 - x_3 + \sum_{l} a_l r_l)^2$
$x_1 + x_2 = b$	$P(x_1 + x_2 - b)^2$

- x₁, x₂ and x₃: binary variable
- P: penalty coefficient(large positive constant)

4 B K 4 B K

r_l: slack variable

Optimization Problems in Wireless Networks

Algorithm

Proposed Algorithm [7]

- **Input:** parameters, *I*, *J*, *M*; the functions in service chain *i*, f_{ij}^k ; the set of VMs which can process f_{ij}^k , V_{ij}^k ; the NFV network;
- **Output:** *š*, *x*_{ijm}, *y*_{ijmt}, *z*_{ijmt}, *p*_{ijmt};
 - 1: Set the value of T_{max} : run the greedy algorithm to get a feasible T_{max} ;
 - 2: Set the value of penalty coefficients;
 - Transform all constraints to equivalent penalties;
 - 4: The QUBO model: add all terms in equivalent penalties to the right-hand side of the objective function;
 - 5: Embedding the QUBO model onto the quantum annealing hardware;
 - 6: return \tilde{s} , x_{ijm} , y_{ijmt} , z_{ijmt} , p_{ijmt} ;

- Find a reasonable T_{max}
- Reduce the number of variables
 - The greedy algorithm: rearrange all VNFs in service chains to a service chain

— Solve the problem with more variables

• D-Wave hybrid solver: use classical computation to assist quantum annealing

Optimization Problems in Wireless Networks

Study Case Results

Case	Parameters	Matrix Q Size	Average QPU Access Time (s)	Average Solver Run Time (s)	Success Rate
а	I = 2, J = 2, M = 2	(272, 272)	0.065	2.993	100%
b	I = 3, J = 2, M = 2	(675, 675)	0.065	2.997	64%
с	I = 2, J = 3, M = 2	(600, 600)	0.063	2.998	36%
d	I = 2, J = 2, M = 3	(462, 462)	0.061	2.994	100%
е	I = 3, J = 3, M = 2	(1191, 1191)	0.064	2.997	58%
f	I = 3, J = 3, M = 3	(1303, 1303)	0.063	3.630	4%

- Spending a much longer time on finding a feasible solution for case f;
- For *case f*, the success rate is very low (because of too many variables);
- Matrix Q size increases the difficulty of finding the optimal solution increases.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Machine Learning

1 Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- 8 Hybrid Quantum-classical Computing

4 Applications

Optimization Problems in Data Center Energy Management Optimization Problems in Wireless Networks Quantum Machine Learning

5 Conclusion and References

Quantum Machine Learning

Quantum Machine Learning

65 / 81

(人間) トイヨト イヨト

Quantum Machine Learning

Feature Selection

Need for feature selection

With feature selection, we can optimize our model in some way

Huge data to train
Relevant feature
Irrelevant feature
Redundant feature
Prevent overfitting
Improve accuracy
Reduce training time

Quantum Machine Learning

BILP Model

Objective function: maximize relevant feature while minimizing redundant feature [8] "influence" bias Basic $\min_{\mathbf{x}} \left\{ \frac{1-\alpha}{k(k-1)/2} \sum_{i} \sum_{j < i} \int_{1}^{1} \left(f_{i}, f_{j}\right) x_{i} x_{j} - \frac{\alpha}{k} \sum_{i} \int_{1}^{1} \left(f_{i}, y\right) x_{i} \right\}, \forall i, j \in S._{\text{context}}$ number of feature independence x: decision variable

Many Constraints

$$\sum x_i = K_j, \quad \forall i \in S_j \quad j \in \{1, \ldots, z\}.$$

	1 2 3 4 5 6 7 8 9	duration protocol_type service Flag src_bytes dst_bytes Land wrong_fragment urgent	Content	10 11 12 13 14 15 16 17 18 19 20 21	Hot nom_hiled_logins logget_in nom_compromised nom_stabil num_stabil num_stabils num_stabils num_stabils num_sces_files num_stabils num_st
nt	22 23 24 25 26 27 28 29 30 31	is_guest_login count srv_count serror_rate srv_serror_rate rerror_rate same_srv_rate diff_srv_rate diff_srv_rate	Traffic	32 33 34 35 36 37 38 39 40 41 42	dst_host_count dst_hois_are_srv_rate dst_hois_are_srv_rate dst_hois_diff_srv_rate dst_hois_are_srv_port_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate dst_hois_are_count_rate

Set K is decided by a wrapper method

Quantum Machine Learning

Constraints

$$\sum_{i\in C_g} x_i \leq 1, \quad \forall \mathsf{C}_g \in \mathsf{C}.$$

Some are conflict

Feature in C_g may have the same information, and are selected at most once

Some rely on others

 $x_i - x_j \leq 0, \quad \forall (i,j) \in \mathbb{E}.$

$$\sum x_i = T, \quad \forall i \in \mathbb{D}.$$

Some are essential and have priority

Quantum Machine Learning

Reformulate to QUBO

- Similarity between features $\rightarrow Q_{ij}$
- Similarity between features and labels $\rightarrow Q_{ii}$

Quantum Machine Learning

Algorithm and Experiments

Pearson

$$p = \frac{\mathsf{Cov}\,(X,Y)}{\sqrt{D(X)}\sqrt{D(Y)}}$$

- y = +1 indicates that X and Y are totally positively correlated.
- y = 0 implies that X is not correlated to Y at all.
- Mutual Information:

$$I(x; y) = \sum_{i=1}^{n} \sum_{j=1}^{n} p(x_i, y_j) \log \left(\frac{p(x_i, y_j)}{p(x_i) p(y_j)} \right)$$

Mutual information is zero when x and y are statistically independent.

2

Quantum Machine Learning

Algorithm and Experiments

In order to search the best α before feature selection we proposed an algorithm.

Algorithm for searching α ¹. Given the information matrix I, find the α that maximize the accuracy of classification method SVC(x)

Input: I: Common information matrix. s: step size. Output: α : weight balance parameter. 1: $\alpha \leftarrow 0.05$: m acc ← 0; 3: $acc \leftarrow SVC(\alpha, \mathbf{I});$ 4: while $\alpha < 1$ do 5: if m acc < acc then 6: $\overline{m}_{acc} \leftarrow acc;$ 7: $\alpha \leftarrow \alpha$: 8: $\alpha \leftarrow \alpha + s;$ 9: acc \leftarrow SVC(α , I); 10: return α.

QUBO feature selection with weight balance parameter

 α is to balance 2 factors on the two plates

¹This part could be done by classical solvers or quantum annealers.

Quantum Machine Learning

Search the Best K

Algorithm: Search the best K Input: T^2 , K^3 , I^4 , α^5 , m^6 Output: The final set K* 1: $x^* \leftarrow QFS(K, \alpha, I);$ 2: Max acc \leftarrow SVC(x^{*}); 3: K* ← K: 4: while iteration < m do 5: if sum(K^*) < T then for $K_i \in \overline{K}^*$ do 6: 7: $K_i^* := K_i + 1;$ 8: $\mathbf{x}_{i}^{\dagger} \leftarrow QFS(K_{i}^{\ast}, \alpha, \mathbf{I});$ Update x* by x*; 9: accuracy $a \leftarrow SVC(x^*)$; 10: 11: Insert a to vector A. 12. if Max(A) > Max acc then Max acc $\leftarrow \overline{M}ax(A);$ 13: 14: Update K*. 15: if sum(K^*) > T then 16: for $K_i \in K^*$ do $K_i^* := K_i - 1;$ 17: $\mathbf{x}_{i}^{*} \leftarrow QFS(K_{i}^{*}, \alpha, \mathbf{I});$ 18: Update x^* by x^* : 19: accuracy $a \leftarrow SVC(x^*)$: 20: 21. Insert a to vector A. 22: if Max(A) > Max acc then 23. $Max \quad acc \leftarrow \overline{M}ax(A);$ 24. Update K*. 25: return K*.

m: max iteration.

K: Set of initial parameters.

I: Information matrix.

 α: weight balance parameter.

T: Number of total selected features.

Sometimes the number of features is too large and D-wave can't handle it. We divide it into small subsets.

After subset 1 calculation, $\mathbf{x} = \mathbf{x}_1^* \cap \mathbf{x}_2 \cap \cdots \cap \mathbf{x}_p \circ \mathbf{x}_{\circ}$

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Quantum Machine Learning

Evaluation Method

	Relevant	Not Relevant
Retrieved	True Positives (TP)	False Positives (FP)
Not Retrieved	True Negatives (TN)	False Negaitives (FP)

$$accuracy = \frac{TP+TN}{TP+FP+TN+FN}.$$

precision =
$$\frac{TP}{TP+FP}$$
.

$$recall = \frac{TP}{TP+FN}$$

Accuracy is the percentage of accurately predicted samples to all samples that were forecasted

Precision is the capability of a classification model to identify only the relevant data points.

Detection estimates the ability of a model to discover all the relevant data points.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Machine Learning

Experiments and Results

Accuracy on different algorithms

Precision on different algorithms

Recall on different algorithms

Control Group:

HHO: Harris hawk optimization (2019)

SSA: Salp swarm algorithm (2017)

WOA: Whale optimization algorithm (2016)

PSO: Particle swarm optimization (2018)

Our result is at least comparable to other algorithms.

The recall is low for R2L attacks because the sample size is small and we did not train a separate model for it.

Quantum Machine Learning

Experiments and Results

Feature selection and detection time of different algorithms

- Selection time: Time spent removing irrelevant and redundant features.
- Detection time: Time spent training the model with the selected features.

・ 同 ト ・ ヨ ト ・ ヨ ト

Quantum Machine Learning

The Summary of the Experiment

- For the evaluation methods accuracy, precision, and call, our QFS's performance is comparable with other classical algorithms
- Compared with other classical algorithms, the QFS algorithm can find the optimal solution at a higher speed while maintaining accuracy. At the same time, the QFS algorithm removes redundant features, which considerably increases the detection speed.

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing
- 4 Applications
- 6 Conclusion and References Conclusion Bibliography

Conclusion

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- B Hybrid Quantum-classical Computing
- 4 Applications
- 6 Conclusion and References Conclusion Bibliography

Conclusion

Conclusion

More Applications ...

イロト イポト イヨト イヨト

2

References and Bibliography

Motivation and Quantum Computing Basics

- 2 Adiabatic Quantum Computing
- 8 Hybrid Quantum-classical Computing
- 4 Applications
- 6 Conclusion and References Conclusion Bibliography

References and Bibliography

- R. P. Feynman, "Simulating physics with computers," in *Feynman and computation*. CRC Press, 2018, pp. 133–153.
- [2] E. K. Grant and T. S. Humble, "Adiabatic quantum computing and quantum annealing," in Oxford Research Encyclopedia of Physics, 2020.
- [3] W. Scherer, Mathematics of quantum computing. Springer, 2019.
- [4] Z. Zhao, L. Fan, and Z. Han, "Hybrid quantum benders' decomposition for mixed-integer linear programming," in 2022 IEEE Wireless Communications and Networking Conference (WCNC). IEEE, may 2022, pp. 2536–2540.
- [5] L. Fan and Z. Han, "Hybrid quantum-classical computing for future network optimization," in IEEE Network, oct 2022.
- [6] F. Glover, G. Kochenberger, R. Hennig, and Y. Du, "Quantum bridge analytics i: a tutorial on formulating and using qubo models," *Annals of Operations Research*, pp. 1–43, 2022.
- [7] W. Xuan, Z. Zhao, L. Fan, and Z. Han, "Minimizing delay in network function visualization with quantum computing," in 2021 IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, dec 2021, pp. 108–116.
- [8] M. Li, H. Zhang, L. Fan, and Z. Han, "A quantum feature selection method for network intrusion detection," in 2022 IEEE 19th International Conference on Mobile Ad Hoc and Smart Systems (MASS). IEEE, 2022.

イロト イポト イヨト イヨト

References and Bibliography

Thanks!

3

《曰》《聞》《臣》《臣》