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Quantum Computing

Motivation

Started in the 1980s Quantum Computer

o W
& Migrosoft

5

Many years later

Feynman said, maybe we need to
use quantum mechanics in our
computers. [1]
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal

: When there are only 2 guests attend,
seating plan

the total seating plan could be
calculated by a permutation equation

N2 =pP;=21=2.

seating plan

Total combinations:
2
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Quantum Computing

What is wrong in classic computing?

Dinner Party
But with only ONE optimal
seating plan

There are 5 guests showed up.

The total seating plan could be
calculated by a permutation equation

N2 = P2 =5! =120.

seating plan
Total combinations:
120

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 6 /81



Mtv. & QC Bas.
[e]e] lelele]ele)

Quantum Computing

What is wrong in classic computing?

Dinner Party Now, 10 guests rush in to the party.
But with only ONE optimal

. The total seating plan could be
seating plan

calculated by a permutation equation

Nsle%ting plan — Pllg =10! = 3,628, 800.

It is hard for us to figure out the
optimal solution from a tremendous
Total combinations: possible choices.

3,628,800
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Quantum Computing

What is wrong in classic computing?

Similar things also happen in these fields.

Dinner Party
But with only ONE optimal
seating plan

- T

Total combinations:
3.628.800 Manufacturing & Financial Services

Logistics
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Quantum Computing

What is wrong in classic computing?

The classical computer has to go through every
combination in sequential to sort out the
optima.

However, quantum computer can achieve the
same in 3 steps.
1 2 3

0 The machine is activated by creating an equal
Activate the spread Encode the problem Unleash the pewer superposition of all 2” states.

9 The problem is encoded onto the system by
applying gates or a magnet field.

N
F‘ 9 The machine comes to a solution by using
\ / physical principles of interference to magnify the

amplitude (possibility) of the correct answer and
shrink the incorrect answers. Some problems
require iterating steps of 2 and 3

HYBRID QUANTUM-

SSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION




Mtv. & QC Bas.
[e]e]e] lelelele)

Quantum Computing

What is wrong in classic computing?

Now, the Party seating plan with 10 guest will
use

2 € 8 log, 3628800 = 21.79 ~ 22 qubits,

"Activate the spread Encode the problem Unleash the power

to encode the problem and computing the

correct answer in parallel.
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Quantum Computing

What is wrong in classic computing?

Quantum computers
Can

create vast multidimensional spaces to deal with
|arge problems,
1 2 3

and translate them back into what we can use,
Activate the spread Encode the problem Unleash the pawer

while
classical computers
may have

difficulties

to do the same.
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Quantum Computing

Quantum Computing is Booming

Top Funded Companies

Amount raised ($M)
D-Wave Systems

Rigetti
Comput

silicon Quantum

Computing $326.14M

Qb Laser

Cambridge
Quantum Comput
1Q8it

Information Te.

Xanadu

Zapata
Comp

Qua
Biosystems
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Quantum Computing

Quantum Computing is Booming

Top Funded Companies

Amount raised ($M)

D-Wave Systems
Rigetti
Computing

silicon Quantum

Computing

Qb Laser

Cambridge VERIFIED

MARKET $1797.1

Quantum Comput RESEARCH MILLION

Xanadu

Global
Quantum Computing
Market

2021-2028

onQ

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 8 /81



Mtv. & QC Bas.
[e]e]e]le]e] lele)

Quantum Computing

Known Types of Quantum Computing and Their and Generality.

Quantum Annealer Analog Quantum Universal Quantum
IBM Q' rigetti
D:waue )
e QurunConpry INFINITY[Q) <
IONQ
A very specialized form of The most likely form of The true grand challenge in quantum
quantum computing with quantum computing that computing. It offers the potential to
unproven advantages over will first show true quantum be exponentially faster than tradition
other specialized forms of speedup over conventional computers for a number of important
conventional computing. computing. applications for science and businesses.

HYBRID QUANTUM SICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION



Mtv. & QC Bas.
[e]e]e]le]e] lele)

Quantum Computing

Known Types of Quantum Computing and Their

Quantum Annealer

Diave
Difficulty *
Application Optimization

Restrictive
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Analog Quantum

)
INFINITY|Q)

Difficulty * * K

Chemistry

Application Sampling
Quantum
Dynamics

Partial

and Generality.

Universal Quantum
1BMQ | B

IONQ

Difficulty * Kk x ok K
Cryptography
Application Searching

Securing Computing

High
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Quantum Computing

Rank of quantum processors

50
1BMQ
29 \as0p.
BMQ
n/ s
IBMQ g
49 195 Google Al
2 53\ Bristecone
4 i Google Al
intel. syeamore
17Tt
o 127
rigetti IBMQ | [IBMQ
K A Manhattan Eagle
- " 50 100
128
D:Waue
vy

one

Number of Qubit(s) 127
Manufacturer

— Photonics

Name/Codename/Designation — Trapped ion

Circuit-based quantum processors

200 . 1000

152

Annealing quantum processors

D-WAVE quantum annealer computer fits our problem setting the most.
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Quantum Computing

Classification

Why Quantum Annealing?

Quantum Computer

Energy

Classicalpath =,

® Gate Model
® Analog Quantum Model

® Quantum Annealing | YT

Solution

Quantum Tunnelling
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Qubits and Quantum Operations

Superposition

A quantum bit |¢) = «|0) + 5|1) in a superposition,

® ||a|[?: the probability in state |0)
* ||B||: the probability in state |1)
o flal?+ 181> =1
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Qubits and Quantum Operations

Tensor product and multi-qubits

® |Y)) ® |¢) represents the overall state of two quantum bits.
[ ]
1) ® |¢) = 00|00) + c01|01) + @10[10) + 1111),
[levoo||* + [|awon||? + llesol * + [|aas||* = 1.
® A general n-qubit system:
[ ]
o
n (651}
@)= aili) =
i=0 Ap_1
an
e |i) is the i*h computational basis of the space, and «; is the

amplitude of the it" computational basis.
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@® Adiabatic Quantum Computing
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Quantum Evolution and Algorithm

Schrodinger Equation

Schrédinger Equation
e Evolution fromt=0tot=T
o A = H(t)y(e))
° |1/J( )) : The actual state of the system

® H(t) : a time-dependent Hamiltonian (i.e., Kinetic Energy +
Potential Energy)

° H(t)loj(t)) = E;(t)];(t))
® |¢j(t)) : the j—th instantaneous eigenstate

® Ej(t) : the j—th instantaneous eigenvalue
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Quantum Evolution and Algorithm

Adiabatic Quantum Computing Overview

® A computing approach utilizing the quantum mechanics (e.g.,
superposition, entanglement).

® Prepare the system in a initial state and transform it to the
final state.

® Has the potential to speed up the computing process.
® Polynomial equivalent to circuit model

e Applications: PageRank algorithm, Quadratic Unconstrained
Binary Optimization, Machine Learning.
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Quantum Evolution and Algorithm

Adiabatic Quantum Computing Algorithm [2][3]

1: Encoding the solution

® 1) Encoding target solution in final state |¢;(T)),j = 0.

® 2) Encoding target function in the final eigenvalue E;(T).

® 3) Find the Hamiltonian H(T) = Hy, based the encoding rules.
2: Prepare the initial Hamiltonian H(0) = H;,; and its
eigenstates |¢;(0)),j = 0.
® 3: Prepare the time dependent Hamiltonian
H(t) = (1 — f(t))Hini + f(t)Hgin,
f(0)=0,f(1) =1,0 < f(t) <1, fort € [0, T]. function f(t) is
at least twice differentiable.

4: Evolve the system from t =0 to t = T, then observe the
final state to obtain the solution.
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@® Adiabatic Quantum Computing

Quantum Annealing
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Quantum Annealing

® Annealing a Metal

® Heat the metal to a temperature
® Lower the temperature

¢ Simulated Annealing
® Heuristic, random search method.
® Quantum Annealing

® A relaxed QAC approach
® Work in finite temperature and in open
environments.

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION 21 /81



AQC

Quantum Annealing

Simulated Annealing VS Quantum Annealing

¢ Quantum Tunneling
® Enables jumping from one classical
state to another
® Decreases likelihood of getting
stuck in a local minimum

e Width of energy barrier is
important, but height is not
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Quantum Annealing

Energy diagram in Quantum Annealing

High Energy (a)

(b) (@
Superposition 0 1 0 1 H‘ijgle_‘r_
T oftover stae
@
~ D o b
Low Energy @< N\ gnetic

field

A matter of microseconds.

e Qubits are
entangled
e At state of many

e Initial Qubits
D:Waue e Superposition at
T |0)s and [1)s.

e Not yet coupled

e Inputs’ energy are set.

e Lowest energy is at or
possible answers closes to the optima.
e Couplers & biases e Energy — possibility
applied
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Quantum Annealing

Ising Model

Spins interact with applied (external) field

Neighboring spins interact with each other

H (t) = Z th‘Jz. + Z J,'JO’LUJZ..
j ()

QA algorithm use Ising Model as its final Hamiltonian.

on. is the Pauli Z operator .

® J;j represents the coupling strength between qubits /, ;.

h; is the local bias on qubit .
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@® Adiabatic Quantum Computing

Quadratic Unconstrained Binary Optimization (QUBO)
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Quadratic Unconstrained Binary Optimization

0]V]:10)

n—1n-1

F) =Y xQijx; xe{0,1}".

i=0 j=0
These important optimization problems can be transformed into QUBO model:

® Knapsack Problems

® Assignment Problems Quantum Computing:
o Task Allocation Problems — provide an alternative method to
solve some NP-hard problems

® (Capital Budgeting Problems
® ... (NP-hard problem)
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Quadratic Unconstrained Binary Optimization

QUBO as Ising Model

Core ldea

¢ Encoding the objective function f(x) as the eigenvalue of the
ground state.

® Hnlx) = f(x)|x), where |x) = |x,—1...X0)

* 02[0) = 10), 02[1) = —|1)

° azlx) = (1= 2x)lx;), % € {0,1}

o ¥, =191 @0, ® 1% for j € {0,n— 1}

* Thlxg) = (1 2q)lx), x € {0,1}
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Quadratic Unconstrained Binary Optimization

Hamiltonians for QUBO
n—1 )
* Hini = szz

® Hflnal = Z KZJ + Z JUZIZZJZ + C1®n

i,j=0
i#
° Ji=3Q; fori#j
n—1
* Ki=—1> (Q+Q) ——o-~
i,j=0
i;éj
4ZQJ/ 2ZQJJ
J=0
IJ#J

e Optimal objective value : eigenvalue of ground state.
e Optimal solution obtained : final ground state.
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Hybrid Quantum-classical Decomposition Framework

Classical Computer

Quantum Computer )
Fixed Integer Solution

000 000
001 001

010 010

o1l o1l

100 100

101 101

110 o ]

111 il Cutting Planes

Pure Integer Polynomial Solvable

Programming

® Divide the mixed-integer convex problem into two parts.

® Pure integer part: solved by the quantum computer.
® Polynomial solvable continuous part: convex optimization

algorithms.
e Obtain solutions of integer variables from quantum computer.

e Generate cutting planes from classical computer.
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Mixed-integer Linear Programming

© Hybrid Quantum-classical Computing

Mixed-integer Linear Programming (MILP)
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Mixed-integer Linear Programming

Structure of MILP

Mixed-integer Linear Programming is of:

max cTx + hTy

XY Problem type Example Problem
s.t. Ax+Gy <b, Matrix Permanent
x € X,x € {07 1}n; NP-Hard Turing Halting Problem
y € R”. MILP

® Mixed-Integer linear Programming Steiner Tree

(MILP) is NP-Hard. NP-Complete Graph 3-coloring
® |t can't be solved in polynomial time Maximum Clique
unless P = NP. Factoring

NP

Graph Isomorphism

Linear Programming
NP-Complete | NP P
Graph Connectivity
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Benders' Decomposition

© Hybrid Quantum-classical Computing

Benders’ Decomposition
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Benders’ Decomposition

Benders' Decomposition Introduction

Consider a Mixed-integer Linear Programming,

max cTx + hTy

na max  cTx + z;p(x)
X
t Ax+Gy<b
st. Ax+ Gy < Zp Replacement, st. xeX, xe{0,1}"
X € X,X S {07 1}”7
p
yeRY.

We denote the value of the best choice for y by z p(x)

z1p(x) = mfx hTy z1p(x) = min(b — Ax)Tu
u

LP Duali Pe- - oo -o- -
s.t. Gy <b—Ax LP Dualy, .t

y €RE. L _UERY.

Feasible Region Q
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Benders’ Decomposition

Benders' Decomposition Introduction

z1p(x) = min(b — Ax)Tu max  cTx + z;p(x)
u X
s.t. GTu > h, st. xeX, xe {0,1}"
u € RT

Feasible region Q does not depend on x.
z,p bounded k
= st (b—AX)Tu* > zp(x),

Extreme rays: r/, j € J, e (b — AX)Trk >0,

ZIp=—00

Extreme points: u*, k € K,

ZLP(X) €R.
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Benders’ Decomposition

Benders' Decomposition Introduction

max cTx + z;p(x)
x max cTx + z;p(x)
st. (b—AX)Tu* > zp(x) for k € K, *
(b—AX)TH >0 forjeJ,
zip(x) ER, x € X, x € {0,1}".

st. xeX, xe{0,1}".

feasible region Q does not depend on x.
z,p bounded k
= st (b—AX)Tu* > zp(x),

Extreme rays: r/, j € J, — (b— Ax)Trk >0,

2z p=—00

Extreme points: u*, k € K,

ZLP(X) ER.
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Benders’ Decomposition

Benders' Decomposition Introduction

max  c¢Tx+ z p(x)
x z1p(x) = min(b — Ax)Tu
st. (b—AX)Tuk > zp(x) for k € K, y

g ) s.t. GTu > h,
(b—AX)TH >0 forjeJ, uERT.
zip(x) €R, x€ X, x€ {0,1}".
Replace z;p(x) with symbol t.
max cTx+t solution x min  (b—Ax)Tu
’ u
st. (b—AX)Tuk >t for k€K, st. GTu>h,
(b-AQTr/ 20 forjed,  FRePelEn v R
teR, xeX, xe {0,1}". or point x
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Benders’ Decomposition

Benders' Decomposition Algorithm:

Algorithm:
 Determine (possibly empty) initial sets K of extreme o cTx+t
points and J of extreme rays of Q. st (b—ANT UK >t fork € K
® Solve the (modified) master problem, the relaxation of (b—ANTH >0 forje,

the Benders reformulation. Obtain solution X and

N teR, xe X, xe {0,1}".
corresponding t. 0,1}

® Determine z;p(X) by solving the dual of the
subproblem.

® IfZ,p=—o00, an extreme ray of Q has been found.
Add the extreme ray to J and return to Step 2.
(Feasibility Cuts).

® If zp(X) <t and finite, Add the extreme point of Q muin (b—AX)Tu
to K and return to Step 2. (Optimality Cuts) st GTu>h,

® If z;p(X) =t then X solves the original mixed integer A
m.

program (1), with optimal y equal to the solution to
the primal subproblem (2) with x =X.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

© Hybrid Quantum-classical Computing

Hybrid Quantum-classical BD for MILP
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders' Decomposition (CBD)

T Solution x
max  cTx+t —_— min  (b—Ax)Tu
) u
st. (b—AX)Tuk >t for k€K, st. GTu>h,
) —
(b—AX)TH >0 forjeJ, Feasible region Q u € RY.
n Either extreme ray
teR, xeX, xe{0,1}". or point x
QUBO (Quadratic Unconstrained Binary Optimization) Master problem of CBD is
- Q; :x: XX one step away from pure ILP
QObJ Z X’QI”X’ + Z Z Q"JXIXJ' (Integer-linear programming).
i i<y
The last barrier is
Qobj : Upper triangular matrix x; : Binary variable the scalar
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders' Decomposition Master Problem

max cTx+t
t

X1

st. (b—AX)Tu*>t, for k€K,
(b—AX)TH >0, forjeJ,
teR, xeX.

In order to reformulate the master problem into the QUBO formulation,

we use a binary vector w with length of M = m, +m_ + m+ 1 bit(s) to replace the
continuous variable t.

me m- mi : # of bits of N part.
t= Z 2'Wigm — Z 2 Wiy (14mtmy ) m : # of bits of the decimal part.
i=—m j=0 m_+1 : # of bits of Z_ part.

=F(w).
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Benders’ Decomposition to QUBO

Classical Benders' Decomposition Alternative Benders' Decomposition
Master Problem Master Problem
m o m m

max cTxt >0 2Wiam = D 2w (1 imim,) max <Txt 30 2wim = X 2w (aimim,)
i=—m =0 i=—m i=o

sit. (b— Ax)T uk >F(w), forkekK, s.t. (b— Ax)T uk > (w), forkeK,

t reformulation

(b—A)TH >0, forjel, (b—A)TH >0, forjeJ,

x€ X, xe€{0,1}", x € X, xe{0,1}",
we W, WE{O,I}MA we W, WE{O,I}MA
MILP Pure ILP

QUBO can be applied now.
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Alternative Benders' Decomposition Master Problem

m4 m_
max cx+ > 2Wiim — > W1 mim,)
’ i=—m j=0
st. (b—Ax)Tuk >T(w), forkeK,
(b—AX)TH >0, forjel
xe X, xe{0,1}",
weW, we{0,1}".
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Hybrid Quantum-classical Benders’ Decomposition Master Problem

m4 m_
max <+ > 2Wiim — > Wi,
’ i=—m j=0
st. (b—Ax)Tuk >T(w), forkeK,
(b—AX)TH >0, forjel
xe X, xe{0,1}",
weW, we{0,1}".
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

Hybrid Quantum-classical Benders’ Decomposition
Master Problem

Constraint Equivalent Penalty
g . x1+x2 =1 P(x1 + x2 — 1)%
< CTX+,’:Z_:m2 it 22] i (rmimy) x1+x2>1 P(1—x1—x2+x1x2)
s.t. (b— Ax)T uk > T(w), fork €K, atx =<1 P (xax2)
(b— AT J >0, forjed x1+x2+x3 <1 P (x1x2 + x1x3 + x2x3)

n
x€X, xe{0,1}7, Table of Common Constraint-penalty Pairs

we W, we{o, 1}M
(1) Objective Function:

cTx+ Z 2 Wiy — 221 Wit (1+m+miy)

i=—m

my
— xTdi i
Qopj = x" diag () x + Z Witm2 Witm — Z YWit( l+m+m+)2jvvj+(1+m+m+)

i=——m
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition

(2) Optimality Cuts:

- K\ T T ok o
Hybrid Quantum-classical Benders’ £(w) + (u ) Ax < bTu”, for k € K.

Decomposition K 2
Master Problem =P, (t(w)+ (uk)TAX+ Z 215;((, -~ bTuk) i
my m_ =om
r)r('n!evx cTx+ Z 2iWi+m - Z 2j""j+(1+m+m+) where T/ = [bgz (bT o - min (?(W) + (”k)T Ax)ﬂ
f=—m j=0
st. (b—A)Tuk >TF(w), for ke K, (3) Feasibility Cuts:
(b—AX)TH >0, forjed,
x€ X, xe{0,1}", ) Ax < bTH, forje J.
weW, we{0,1}M. 2

T Ax+ 22 sp—bTH
where 1/ = |og2 (bTrj — mxin ((rj)T Ax))—‘
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition for MILP

xI = {w,x},
Hybrid Quantum-classical Benders'’ . .
Decomposition for Mixed-integer s is the set of slack variables.
Linear Programming
f(X') =XTQquoX,
NP-hard

Integer Variables
Master Problem

Integer Solution

Qqueo = x" diag(c)x,
maxg, ¢ z+h'y

quontum computing

e m_
st. Ar+Gy > b i i
N = b, A, LIS _ ’ _ 2w _
ze X, ze{0,1}", v + I_:X_:m Witm< Witm ; Vit (1+m+mig )< Wit (1+m+mmy )
ye RP. L - ,
7K
I
Optimality & Feasibility Cuts cPu T k\T I K T k
+ E Pe | T(w)+ (v Ax + E 25, —bTu

Subproblem kek
Continuous Variables
Polynomial Complexity

=m

2

jed

7
+>p (r/)TAx+§2’s,{, — b7
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition for MILP

x' = {w,x,s},
Hybrid Quantum-classical Benders'’

Decomposition for Mixed-integer S 1S the set of slack variables.

Linear Programming
/ T /
f(x') = x"Qqusox,
NP-hard

Integer Variables
Master Problem

Integer Solution

Qqueo = x" diag(c)x,
maxg, ¢ z+h'y

quontum computing

e m_
st. Ar+Gy > b i i
N = b, A, LIS _ ’ _ 2w _
ze X, ze{0,1}", v + I_:X_:m Witm< Witm ; Vit (1+m+mig )< Wit (1+m+mmy )
ye RP. L - ,
7K
I
Optimality & Feasibility Cuts cPu T k\T I K T k
+ E Pe | T(w)+ (v Ax + E 25, —bTu

Subproblem kek
Continuous Variables
Polynomial Complexity

=m

2

jed

7
+>p (r/)TAx+§2’s,{, — b7
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Hybrid Quantum-classical Benders' Decomposition Algorithm

Hybrid Quantum-classical Benders'
Decomposition for Mixed-integer
Linear Programming

NP-hard
Integer Variables
Master Problem

quantum computing
N

Integer Solution

maxl.yc‘z+h‘y

st. Az +Gy > b,
zeX, ze{0,1}", v
y € RP. L
CPU
Optimality & Feasibility Cuts
Subproblem

HYBRID QUANTUM-

Continuous Variables
Polynomial Complexity

Hybrid Quantum-classical Benders’ Decomposition
Algorithm [4] [5]

Require: Initial sets K of extreme points and J of

ghwhE

7:
8:
9:
10:
11:
12:
13:
14:
15:

16:

extreme rays of Q
f < +oo
t <+ —o0

: while | £ —t |> e do

P < Appropriate penalties numbers or arrays
Q <« Reformulate both objective and con-
straints in the master problem and construct the
QUBO formulation by using corresponding rules
x’ < Solve the master problem by quantum
computers.
t + Extract w and replace the f with t(w)
2 p(x) < Solve the sub-problem
t <+ zp(x)
if z;p(x) = —oco then
An extreme ray j of Q has been found.
J=Ju {j}
else if z p(x) < t and t # +oco then
An extreme point k of Q has been found.
R =Ku {k}
return f, x
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Hybrid Quantum-classical BD for Mixed-integer Linear Programming

Result and Demonstration of HQCBDA

o o 1 0 1 o0 First Round ofBender's Decomposiion
0 0 1 0 0 1 o
0 0 0o 1 1 o0 : .
0 0 o 1 0 1 .
A=| -1 -1 |,6=|0 0 0 o0 |, o
-1 0 1 0 0 O . b
-1 0 0O 1 0 O i o
0o -1 0 0o 1 o0 ;
0o -1 o 0o o0 1 "

Round

D-Wave hybrid solver: using classical computation
to assist quantum annealing.
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Optimization Problems in Data Center Energy Management

O Applications
Optimization Problems in Data Center Energy Management
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Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

Data center need to manage the power well.

Data centers use more eletricity
than entire countries

Domestic eletricity consumption of selected
countries vs. data centers in 2020 in TWh

Nigeria . 29
Colombia - 73
Argentina _ 124
Egypt [N 153
south Africa [N 208

Data centers m 200-250

Indonesia _ 266
Uk [— 2

@O  Source: Enerdata, IEA

A Google data center in Council Bluff, lowa
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Optimization Problems in Data Center Energy Management

Scheduling of Datacenter and HVAC Loads with HQCBD

eG2B _ ef /el
t
j -— %ﬁ Outside Grid

Batter,
I e Y ef?d
HVAC system\ Exhaust air % ufet Return air
Tret
" " QRRIELVLLRL
pump Outside ambient XXX
e RS
efan gyent ‘ RS Data Center
t LRRRRRS

. Mixed air ug P
é- eghiller > u % |:‘> T

= out
[0 Outside airT' Supply air

Supply fan Cooling coil

etServer

ettower
ggﬁ The detail of HVAC system in data center

e
il

A general picture of a data center
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Optimization Problems in Data Center Energy Management

Problem Formulation

® 1/0 (ON/OFF) Binary Decision Variables

ufis Battery discharging state at time t

ughr Battery charging state at time t
X;:l;iller Chiller j working state at time ¢t
xj“’t"‘"" Cooling tower j working state at time t

® Continuous Decision Variables

pdis Battery discharging power at time t

pghr Battery charging power at time t

EBstate | Battery status at time t

T,.Zf"e Temperature in zone i of data center at time t

TP AC Temperature in zone i of data center at time t

vyent Ventilation wind speed at time t
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Problem Formulation

The list of problem parameters, index, and sets.

Index and Set Parameters
te T The time range of the problem X; | Temperature weight for zone i
i € |%one The zones in the data center n}i" Battery discharging efficiency
j € JChiller | The available chiller in the data nfh' Battery charging efficiency
center B R
&° | Battery upper-bound capacity
j € Jrower The available cooling tower in
the data center ¢B Battery lower-bound capacity
i’ e N (-) Adjacent zones of zone - B%UP | Coefficient for cooling air-flow power rate
VSuP
Binary decision variable set Byt | 1st Coefficient for ventilation power rate
vent
_ [, dis  chr chiller tower
x= {ut PHE X Xt } BPUMP | nth Coefficient for pump power rate
Continuous decision variable set Bﬁl}i"" nth Coefficient for chiller j power rate
_ [ dis chr B,state Zone sup  vent
y= {pf Py By ST Ty v } B;?j‘-"" nth Coefficient for tower j power rate
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Problem Formulation

Applications
000e000000

Parameters
0it Internal heat generation in zone i Riz,?lf'e Resistance between i & adjacent node
c@" | The specific heat capacity of water !
Water | The specific heat capacity of water T<hwr | The return chilled water temperature
C,-hea' The heat capacity of room 7 Tehws | The supply chilled water temperature
e:uP The eletricity consumed by supply TEO™Wr | The return condense water temperature
air-flow TS°"WS | The supply condense water temperature
Etse""=r The eletricity consumed by servers TPt | The outside air temperature at t
El.?,.'t‘tate Battery initial power reserve T,'%,",’,Ee Zone i's initial temperature
Ets°|"‘"' The eletricity produced by solar system T,-zone’+ Upper-bound temperature of Zone |
m; Air mass flow into the zone i Tiz°"°” Lower-bound temperature of Zone i
mﬁl;i"e' Mass of water that chiller j can process 'I'l,'"'”Jr Maximal AC temperature in Zone i
m}:f’twer Mass of water that tower j can process Tf""’f Minimal AC temperature in Zone i

HYBRID QUANTUM
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Optimization Problems in Data Center Energy Management

Problem Formulation

Parameters Intermediate Variables

AEB | The change of battery power reserve

efhi“e' Electricity required by chillers

Etdc'i" Grid electricity required by the data
center.

LUt | The outside air flow rate at ¢ EHVAC | Electricity required by the HVAC

pump . . .
yreturn [T otumn air flow rate at ¢ e Electricity required by pumps

& . . "
VP | The supply air flow rate at ¢ e;°"<" | Electricity required by cooling tower

ey | Electricity required by ventilation system

vVe™ | The minimal ventilation wind speed

Lt‘eat The total thermal load

mfl"” Chilled water amount required by cooling
tower

m§e™ | Condense water amount required by
cooling tower
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Problem Formulation

MILP Model

T s AEtB _ p:hrnchr _ P:‘is . (ndis)—l, Vt.
. e.g_dec,in
min § py Eer M.
ydis chr dis chr  chiller = Battery's (dis)charging law
£ UE P PE Xt , t=0

X};wer R Tffne R T:I:P s v;lent
E&;tate _ EtB,state + AEtB, Vt.

The objective function: minimize the total cost of
electricity imported from the grid. .
Battery status at time t.

de,in _ ~HVAC Server B Solar -
e =E, + E; + AE” — E; , Vt. i < E&;tate < 55, vt

Th f . .
€ sum Of every energy sources and consumers Battery status requirements at time t.

EtHVAC _ e:up+e:ent+ ch|||er+ pump+ tower vt EB state

B, state
Elmt

The sum of every parts’ energy consumption. Battery initial configuration
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Problem Formulation

MILP Model

‘h' < pCh" . ud", vt TZone _ yZone
Zone __ Zone i’ t it
f : Ti L T T’ + Z heat pZone
The upper bound requirement of battery charging i EN() & Ri’i
. _air sup Zone
. mjc (thT )+9,t
du < pd"- dll’ vt. + P i Vit
Cheat
The upper bound requirement of battery
discharging DC RC network temperature linear state space
model
chr dis
ug 4o <1, Vi Zone, — Zone Zone,+
Ti,t ST LST ot , Vi, t.
The battery cannot be in charge and discharge
mode at the same time interval The upper and lower bound requirement of room
temperature.
sz,gne = le,::l‘: sup, — sup sup,+
TP S TP < TP it
The initial configuration for every zone in data
center The upper & lower bound of room AC temperature.
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Optimization Problems in Data Center Energy Management

Problem Formulation

MILP Model

vent out vent .
v, + v, > v Vt. heat out _sup out _air
t t =2t L= | - Y XiTj Vv S
The minimum ventilation air flow speed ig1Zone
Y (TR - TiR) et e,
sup out return ’ ’
Ve D =ve o v , Vt. jc1Zone
The air flow speed that comes out of the AC The sum of heat load in data center
chiller _ chiller chw heat
2o e m = mE v mehw — t vt

" s
jEJchnller (T;:hwr _ Tt:hws ) . C\’!vater

The min capacity of chiller water that needs to The min amount of chiller water to take away the

handle. heat.
Z XFOWEF m'fower > mCOl’IW R vt . heat
Jst It =t conw Ly
j€ Jrower my = conwr conws water ve.
(75 =715 ) <p
The min capacity of condense water that needs to
handle. The min amount of condense water to take away

the heat.
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Problem Formulation

MILP Model

Jst ) Ut
jEJchnuer e?up _ Blupvtsup, vt

etchi“er _ Z Xf:hi"er (B;hiller + 5;!‘;"=rm9hi"°r) | V.

The upper bound requirement of battery charging The upper bound requirement of battery charging

tower tower [ jtower tower _tower eYent — gyent (v"e"t — v“"') vt
_ = v , Vt.
el = DD R (B BT L vt ! o\

jE€Jtower

The upper bound requirement of battery
The upper bound requirement of battery discharging

it t
discharging V;Ie" > v, vt

The battery cannot be in charge and discharge

um um| um| um| I
er P — Bg P4 [‘31" pms P, vt mode at the same time interval

The battery cannot be in charge and discharge
mode at the same time interval
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Problem Formulation

The original problem.
The master problem.

min cTx + hTy

X,y mxin cTx 4+ z;p(x)

st. Ax+Gy 2 b, z;p Replacement st. Dx>b,
Dx >, x € X, x€{0,1}".
x € X,x € {0,1}",
y e RE.

By applying Benders' Decomposition, we yield the sub-problem and its dual-problem.

zp(x) =min hTy z1p(x) = max(b — Ax)Tu

s.t. GTu < h,

s.t. Gy > b — Ax .
’ LP Duality ue R$

y e RE.
The dual problem of the

The sub-problem. sub-problem.
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DC Hybrid Quantum-classical Benders' Decomposition Algorithm

DC Hybrid Quantum-classical Benders’ Decomposition Al-
gorithm

Hybrid Quantum-classical

Require: Initial (Empty) sets of extreme points K and rays

Benders' Decomposition for J
Mixed-integer Linear L &= +oo, £ = —oo
P . 2: while fl,lﬂ > edo
rogramming 3: P < Appropriate penalties numbers or arrays
4: Q < Reformulate both objective and constraints in
| NP-hard master problem and construct the QUBO formulation
nteger Variables
Master Problem by uslng correspondlng rules
5: X' = {x:l7 xlz, C. ,XN} < Solve the master prob-
Integer Solution lem by quantum computers and get N feasible solu-
tions.

T T
max;, ¢ z+h y - - =
t «+ Extract w and replace the t with t (w
s.t. Az +Gy > b, P (w)

6
7: for x € X’ do
8:

quantum computing

ze X", 2 {0,1}", ' : 2 p(x) < Solve the sub-problem
ye R g 9: t <+ zp(x)
Optimality & Feasibility Cuts ce 10: if 21p(x) = —oo then
11: An extreme ray j of Q has been found.
Subproblem 12: J=Ju {}
Continuous Variables 13: else if z;p(x) < t and t # oo then
Polynomial Complexity : LP
14: /}n extreme point k of Q has been found.
15: K =K U {k}
16: break

17: return £, x
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Experiment Set-up

Values for some important parameters in the algorithm.

Symbol | Definition Value
m The bits assigned to decimal part 14
my The bits assigned to positive integer part 16
m_ The bits assigned to negative integer part
N The number of feasible solutions selected from the

master problem
|T| The length of each time interval (minutes) 10
€ The threshold of gap between t and t 1074
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Experiment Results

Iterations for different case set-up

Set-up Binary Variable # Iterations of CBD Iteration of HQCBD
T=3

Case1 | ehiller _ 4 12 84 49 46 47
Jtower =1
T=3

Case2 | chiller _ 5 18 62 36 35 35

Jtower _ o

T=3

Case 3 | ychiller _ 4 33 117 66 74 65
Jtower -5
T=4

Case 4 | ehiller _ 5 24 217 120 125 127
Jtower -2
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Optimization Problems in Data Center Energy Management

Experiment Results

Iterations for different case set-up

Set-up Binary Variable # Iterations of CBD Aver. iter. of Progress
HQCBD
T=3
Case 1 | ychiller _ 4 12 84 48.67 —42.06%
Jtower _ 1
T=3
Case2 | chiller _ 5 18 62 35.33 —43.01%

Jtower _ o

T=3
Case 3 | chiller _ 4 33 117 68.33 —41.60%
Jtower _ g
T=4
Case 4 | chiller _ 5 24 217 127.33 —41.32%

Jtower _ o

The hybrid quantum-classical Benders' decompsition could save more than 40%
iterations than classical Benders decomposition.
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Experiment Results

Iteration comparison

om0
20000
2000
20
2000 |
D 20000 i
El g —+— Gurobi + Gurobi |
g S | — HypridaC1
2 w0 v —— Hybrid QC 2
2 b=t —— Hybrid QC 3
2 2 —— Optima line
T w000 B w000
(=} o
e —— Gurobi + Gurobi 100
Hybrid QC 1
12000 —— Hybrid QC 2
—— Hybrid QC 3 200
—— Optima line
o000
3 » % @ 0 7 % % % &
Iterations Iterations
chiller tower chiller ower
Casel: T =3, J =1, J =1 Case2: T =3, J =2, St =2
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Optimization Problems in Data Center Energy Management

Experiment Results

Iteration comparison

200

750 {
2000 ‘

$ 8 25000
E] —— Gurobi + Gurobi El —— Gurobi + Gurobi
T 00 pubrid C 1 | 4 ~~ Hybrid QC 1
g —— Hybrid QC 2 Q| — Hypridac2
Z —— Hybrid QC 3 2 —— Hybrid QC 3
2,15 | —— Optima line 2 ~—— Optima line
9 &
o O 200001
1000
| 7500 |
2000
1000
7 ) ] Y o 7 % £ & ED
Iterations Iterations
chiller tower chiller ower
Case 3: T =3, J =4, ) =5 Case 4: T =4, J =2, =2

The hybrid quantum-classical Benders' decompsition takes the lead from
beginning and wins the comparison safe and sound.
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O Applications

Optimization Problems in Wireless Networks
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Network Function Virtualization

Traditional Network Appliances

0@00000000

Network Function Virtualization

Virtual
Firewall
(VNF 1)

Virtual
NAT
(VNF 2)

Virtual
DPI
(VNF 3)

> i1/

Router

ElElE

Standard
Servers

NFV reduces the difficulty of hardware configuration and improves the

flexibility of a network.
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Network Function Virtualization

[ Operation/business support systems

Virtual Virtual
Network Machine (VM)

Virtualization layer

Virtualized

/ Physical
\Machine PM)

manager

|
|
|
Shared hardware resources 1
|
|
|

Virtualized infrastructure

Physical Physical ‘ Physical
Network 1 Network 2 Network 3 NFV Architecture

The virtual network functions (VNFs) are implemented in virtual
machines by software and virtual environment.
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Network Function Virtualization

Service Chain 1

Service Chain 2 Virtual
Machine

Virtual
Network ) )
® \/ast service chains;

_____ § ® VVNF scheduling problem:
how to deploy VMs to
process VNFs;

® Delay minimization;

Customers Q Q @
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System Model

® All hardware is located in a data center
— Neglect the transmission delay

® Tim: the minimum integer that is equal to or larger than (tj,/AT).

UL

Time Slot

B scrgi= i

SC2 (= f1= £2)

P s 25— 1%

UL 24

A NFV network A possible arrangement of service chains
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Problem Formulation

® Decision Variables

Xijm equals to 1, if VM m is used to process ka, otherwise, equals to 0
equals to 1, if VM m is used to process f;Jk in the time slot t ;
Yijm otherwise, equals to 0
equals to 1, if VM m starts to process fij‘ at the beginning of the time slot t ;
“iime otherwise, equals to 0
equals to 1, if VM m finishes processing ﬂj’.‘at the beginning of the time slot t ;
Pim otherwise, equals to 0
e Others
fuk the j™ function in service i belongs to the k' type of functions
\/If the set of VMs which can serve fuk
Tj; the number of time slots occupied by processing fuk on VM m
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Problem Formulation

ILP Model
I
min s= Z Tmax

Xjm = Y Zijmes  Vi,j,m
t=1
The objective function: minimize the total
delay of all service chains in the network. If and only if ka is allocated to VM m, this
- k .
VM can start processing fU at some point.
M Tmax

siJ:ZZPiJmt'(tfl)-A Vi. Ly
mor e S5 Yime <1, Vm,t.

L . i=1 j=1
Calculate the finish time of any service
chain. .
Each VM can process at most one function
. in one time slot.
Z Xjm =1, Vi, j.
k ..
mevij Yijmt < Xijm VI7J7 m, t.
Any\f/uMnction fij’f can be processed on only The relationship between X, and Yiim;.
one .
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Problem Formulation

T Tmax
max
- K Pijm(t—B+1) = Zi(j+1)m’t
Z Yijmt = lem * Xjjm VI7J1 m & V’J Z Z ijm(t—p+1) G+1)m' e,
mevk =1
t=1 i
Required total time Tj;,, for processin P Kk’
quired total t ijm for p ing Vit m eVl
function fij must be satisfied.
Zijmt + pijme <1, Vi, j,m,t. The next function of the service chain
Pijmt and zjj,;: cannot be equal to 1 at the must be processed after the processing of
same time. the one before it.
YUm(t—l)_YUmt+ZUmt_PUmt = 07 Vi7j7 m,t. Xijm = Yijmt = Zijmt = Pijmt = 0’
The logical relationship between yjjme, Zijme Vi j,t; m¢ \/If
and pjjmt. Xijm» Yijmt» Zijme and pjim: must be equal to
Tjj 0 if the VM cannot process the function
P k k
Z Zijm(t—a+1) < Yijmt» Vi,j,t; meg V,'j . f;j .
a0:1 UM _— Timax Timax
nce the starts processing the P— =1 Vi |
. . t = Pijmt = 1]
function fX, the VM must process it for Zk Z um Zk Z um ’ ’
) u me Vi t=1 me Vi t=1
required time. For any function ﬁj‘.‘, only one zjm: and one

pijmt can be equal to 1.
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Problem Formulation

QUBO (Quadratic Unconstrained Binary Optimization)

f(x) = Z Qiixi + Z Z Qijxixj, Q:upper-diagonal matrix.
i i<y
® No constraint

How to transfer the ILP model to QUBO model? [6]
e Reformulate all constraints into quadratic penalties;

® Add them to the original objective function;

Constraint Equivalent Penalty
_ 2 . .
xtxe=1 Pla+x—1) ® x3, x2 and x3: binary variable
< - .
Xt taa 1| Plaxe 4 xixs 4 xxs) ® P: penalty coefficient(large positive constant)
x1+x < x3 Px1+x2 —x3+ > am)? ® ;
ri: slack variable
x1+x2=b P(x1 + x2 — b)?
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Algorithm

Proposed Algorithm [7]

Input: parameters, I, J, M; the functions in

service chain /, ﬂ}‘; the set of VMs which
can process fij’.‘, Vlf, the NFV network;

Output: 3, Xijm: Yijmt: Zjjmt, Pijmt;

1

Set the value of Tpax: run the greedy
algorithm to get a feasible Tprax;

. Set the value of penalty coefficients;
: Transform all constraints to equivalent

penalties;

: The QUBO model: add all terms in

equivalent penalties to the right-hand
side of the objective function;

: Embedding the QUBO model onto the

quantum annealing hardware;

: return 8, Xjm, Yiimt, Zijmt, Pijmt:

HYBRID QUANTUM-C

Applications
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— Find a reasonable T«
— Reduce the number of variables

® The greedy algorithm: rearrange
all VNFs in service chains to a
service chain

— Solve the problem with more
variables

® D-Wave hybrid solver: use
classical computation to assist
quantum annealing
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Case Parameters Matrix Q Size Average QPU Average Solver | Success Rate
Access Time (s) | Run Time (s)

a 1=2J=2,M=2 (272,272) 0.065 2.993 100%
b 1=3,J=2,M=2 (675,675) 0.065 2.997 64%
c 1=2,J=3M=2 (600, 600) 0.063 2.998 36%
d 1=2J=2,M=3 (462,462) 0.061 2.994 100%
e 1=3,J=3M=2 (1191,1191) 0.064 2.997 58%
f I=3,J=3M=3 (1303,1303) 0.063 3.630 4%

® Spending a much longer time on finding a feasible solution for case f;

® For case f, the success rate is very low (because of too many variables);

® Matrix Q size increases — the difficulty of finding the optimal solution increases.
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Quantum Machine Learning

O Applications

Quantum Machine Learning
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Quantum Machine Learning

Quantum Machine Learning

Machine Learning —|— C?)l:::ltjir:g j QML

o Quantum Machine

Classical learning Learning
technicues facing Quadradic speed-up o Machine learning and
complex tasks fast

e Not only fast
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Quantum Machine Learning

Feature Selection

Need for feature selection

With feature selection, we can optimize our model in some way

e Huge data to train Set of features
o Relevant feature &
/

e lIrrelevant feature = 0
e Redundant feature ‘ Select best features ‘
e Prevent overfitting ‘ Learning algorithm ‘
e Improve accuracy

Reduce training time

Evaluate
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Quantum Machine Learning

BILP Model

Many Constraints

Objective function: maximize relevant feature

while minimizing redundant feature [8] Sxi=K, Vies; je{l,...,z}.
n
bias "influence o1 o P
2 protocol_type 1
5 sebytes i
1— o ; :«rv;cy:‘g‘.lngmem ;;
; prey W MIGIET S D MU ES SRR
7 og<i 24 srv_count »
25 serror_rate 3 b e
B o sae T e
number of feature R H :;:a:z:::,::w
. 31 STV_( d\" host_rate 42 Clas
independence
Set K is decided by a wrapper
x: decision variable method
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Constraints

Applications
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Y xi<1, Vel
i€Cq

Some are conflict

- }‘:;- Feature in Cg
NN L may have the
} same

information,and
are selected at
most once

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Some rely on
others

xi—x; <0, V(i,j)eE.

Y x=T, Vie

Some are essential and have priority

24002695 €7.979¢1
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Reformulate to QUBO

\ Q Table Map to D-wave

I(fi, ) 1(fi, y)
Qj = (1= &) (5, )

\___.-'/

Qi = ak - I(f;,

® Similarity between features — Qj

¢ Similarity between features and labels — Qj;
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No

Optimization Model
® Pearson
® Mutual Information

® Distance Correlation

HYBRID QUANTUM-CLASSICAL COMPUTING FOR FUTURE NETWORK OPTIMIZATION

Terminate?

® Pearson

Cov (X,Y)

~ V/DX)VD(Y)

® y = +1 indicates that X and Y are
totally positively correlated.

® y = 0 implies that X is not correlated
to Y at all.

® Mutual Information:

I(x;y) = ZZP(XI:Yj)'Og( plx ) )

prr p(xi)p(y;)

Mutual information is zero when x and y are
statistically independent.
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Algorithm and Experiments

—k=12— k=13 k=10
09

In order to search the best o before feature - %
selection we proposed an algorithm. o f/’\w
g(l 84

Algorithm for searching o 1. Given the information 0.82
matrix |, find the o that maximize the accuracy of

classification method SVC(x) o

0.1
0.2
09

0.85

Input: I: Common information matrix.
s: step size.

Output: a: weight balance parameter.

: a <« 0.05;

: m_acc < 0;

1 acc + SVC(a,l);

: while @ < 1 do P

1 QUBO feature selection with weight balance
2

3

4

5: if m_acc < acc then
6: m

7

8

9

parameter

m_acc < acc;
a <+ «;
a — a+s; Importance
acc « SVC(a,l);
10: return a.

Independence

« is to balance 2 factors on the two plates

HYBRID QUANTUM- ORK OPTIMIZATION
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Search the Best K

Algorithm: Search the best K

Input: TZ,K3,|4,a5,m6

Output: The final set K* m: max iteration. K: Set of initial
* parameters.

1: x* + QFS(K, a,l);

2: Max__acc + SVC(x*);

3: K* « K; I: Information matrix. «a: weight balance
4: while iteration < m do parameter.

5 if sum(K*) < T then

6: for K,'*E K* do T: Number of total selected features.
7: K =K +1;

8 xF — QFS(K*, a,1);

9: Update x* by x'; . Sometimes the number of features is too large and D-wave
10: accuracy a ¢ SVC(x™); can't handle it. We divide it into small subsets.
11: Insert a to vector A.
12: if Max(A) > Max_acc then
13: Max__acc <+ Max(A);
14: Update K*. ‘ x: selected features
15: if sum(K*) > T then
16: for K; € K* do K T
17: K’L-* =K —1; Ki Ky 2 x5
18: Xj 4 QFS(K,-*, a, l); K2
19: Update x* by x*

20: accuracy a <+ S/VC(x*) ;

21: Insert a to vector A. Subset 1 Subset 2

22: if Max(A) > Max__acc then

23: Max acc <+ IWax(A); \ .
24: Update K*. X1

25: return K*.

After subset 1 calculation, x = x7 Nx2 A ...M"xp
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Evaluation Method

Relevant Not Relevant

Retrieved

Not Retrieved

Accuracy is the percentage of

_ TP+ TN .
accuracy = JprEprTNTEN accurately predicted samples to all
samples that were forecasted
Precision is the capability of a
precision = %. classification model to identify only the
relevant data points.
Detection estimates the ability of a
_ _1TP .
recall = w57 - model to discover all the relevant data

points.
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Experiments and Results

‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ Normal Probe Dos Ral Normal Probe Dos RaL

@QFS ®HHO @SSA ©WOA ©PSO ®ars

HHO @ SSA  © WOA

. . Precision on different algorithms Recall on different algorithms
Accuracy on different algorithms

Control Group: Our result is at least comparable to other

algorithms.
HHO: Harris hawk optimization (2019)
SSA: Salp swarm algorithm (2017) )
The recall is low for R2L attacks because
the sample size is small and we did not
PSO: Particle swarm optimization (2018) train a separate model for it.

WOA: Whale optimization algorithm (2016)
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Experiments and Results

Selection time Detection time
pso reo I
WOA WOA
ssA ssA I
o I Hro I —
ars I ors I
0 500 1000 1500 2000 2500 3000 3500 0 10 20 30 40 50 60 70 80
Time (second) Time (second)

Feature selection and detection time of different algorithms

® Selection time: Time spent removing irrelevant and redundant features.

® Detection time: Time spent training the model with the selected features.
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The Summary of the Experiment

® For the evaluation methods accuracy, precision, and call, our
QFS's performance is comparable with other classical
algorithms

® Compared with other classical algorithms, the QFS algorithm
can find the optimal solution at a higher speed while
maintaining accuracy. At the same time, the QFS algorithm
removes redundant features, which considerably increases the
detection speed.
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[ Quantum Computing ]

Univi ersal Analog
Quantum Quantum
QUBO model
Benders’
+ decomposition

MILP problem

A wrapper algorithm A classical-quantum
hybrid algorithm

% % The best combination
The optimal solution S The optimal solution

Wireless Networks Machine Learning ~ DC Power Management

VNFs scheduling problem Feature selection

A heuristic algorithm

More Applications ...
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