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Big Data 3V Characteristics
@

Big Data = Transactions + Interactions + Observations

Figure 1
Data is growing at a 40 percent compound annual rate, reaching nearly 45 ZB by 2020
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. Exponentially increasing data size
. Heterogeneous types of data
O Possible to analyze ALL available data
. Need to calculate fast
. Key dimensions
O Volume, Velocity and Variety
O Variability and Veracity
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Cisco White Paper,“Visual networking index: global mobile data traffic forecast update, 2016-2021,” Mar. 2017.




Big Data Business
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However
ﬁ

* Nobody knows exactly how to handle big data

* We zoom to
OSignal processing techniques
ONetworking applications




Big Data Techniques
ﬁ

Data Mining Big Data Storage Big Data Sampling
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Big Data Applications
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* Improved targetingof customer segments

* Movingfrom a product to customer focus

* Better management of salesleads across
channels

* Inclusion of customerincentves to
influence behaviour

* Ability to processincreased volume & variety
of data
* Costeffective technology




Communication and Networking

* Fast cloud computing vs. slow communication
* Local, fog vs. cloud




Internet of Things

BILLIONS OF DEVICES

THE INTERNET OF THINGS

AN EXPLOSION OF CONNECTED POSSIBILITY

B

YEAR




Smart Grid
@

* In 2009, “American Recovery and Reinvestment Act”
[1$3.4 billion for SG investment grant program
C1$615 million for SG demonstration program
CJA combined investment of $8 billion in SG capabilities

S M A RT G RI D Smart appliances

A vision for the future — a network Can shut off in response to
of integrated microgrids that can frequency fluctuations ¢
monitor and heal itself

Demand management

{7 Use can be shifted to off-
\ peak times to save money.

Solar panels

Disturbance

Execute special protection @
schemes in microseconds.

__Storage S

-
Sl Energy generated at off-
peak times could be stored
in batterles for later use

Central power
plant

Energy from small generators
and solar panels can reduce
overall demand on the grid




Big Data Ecosystem
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Big Data Landscape
@
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Learning Methods
@
Classical Machine Learning
Bayesian Nonparametric learning
Deep Learning



Classical Machine Learning
@

“Computers: learn without being explicitly programmed”

Types:
« Supervised learning: ) ;?x
O Example inputs (features) and their desired outputs (labels) | Lo
O Goal: learn a general rule that maps inputs to outputs
O SVM, neural networks, etc. x
* Unsupervised learning:
O No labels @ .
O Find structure in its input %
O Goal: discover hidden patterns in data o
O Clustering, K-means, etc.
* Reinforcement learning:
O Interact with a dynamic environment (such as driving a vehicle or
playing a game against an opponent)
O Feedback in terms of rewards and punishments as it navigates its
problem space
O Active learning, Q-learning, etc.




Supervised Learning: SVM
@

* Distance from sample x; to the separator: r
* Support vectors: samples closest to the hyperplane
* Margin p: the distance between support vectors

* Objective: maximize the margin p

_yw'x+b) 1
| W | W
2
pP=r—
| W

y:—lszxi+b£-§

y=1:WTXi+b2§




Supervised Learning: SVM Applications
@

« The best performers for a number of classification tasks
ranging from text to genomic data.

« Complex data types beyond feature vectors (e.g. graphs,
sequences, relational data) by designing kernel functions for
such data.

« Extend to a number of tasks such as regression [Vapnik et al.
'97], principal component analysis [Scholkopf et al. '99], etc.



Unsupervised Learning: K-Means

« Ask user how many clusters
they'd like. (e.g. k=5)

 Randomly guess k cluster
center locations

« Each data point: find out
which venter it’s closest to

 Each center: find the centroid
of the points it owns

« Change center

* Repeat until terminated

0.8

0.6

0.4

0.2




Unsupervised Learning: K-Means Applications

@

« Data mining

» Acoustic data in speech understanding to convert waveforms
iInto one of k categories (known as Vector Quantization or Image
Segmentation)

» Also used for choosing color palettes on old fashioned graphical

display devices and Image Quantization



Reinforcement Learning: Q-Learning
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Reinforcement Learning: Q-Learning

Learning Rate Discount Factor
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Reinforcement Learning: Results
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1 million steps

Learning rate: 0.9999954
Discount rate: 0.8
Epsilon: 0.1




Reinforcement Learning: Q-Learning Applications
@

* Online learning and recommendations systems

« Games: Alphago, Texas Holdem

« Reinforcement Learning in Vehicular Networks



Learning Methods

@

. Classical Machine Learning
. Bayesian Nonparametric learning
. Deep Learning

Nam Tuan Nguyen, Rong Zheng, and Zhu Han, “On Identifying Primary User Emulation Attacks in Cognitive Radio Systems Using
Nonparametric Bayesian Classification,” IEEE Transactions on Signal Processing, vol. 60, no.3, p.p. 1432- 1445, March 2012

Nam Tuan Nguyen, Rong Zheng, Jie Liu and Zhu Han, “GreenLocs: An Energy Efficient Indoor Place Identification Framework,”
ACM Transactions on Sensor Networks, vol. 11, no. 3, article 43, February 2015

Nam Tuan Nguyen, Kae Won Choi, Lingyang Song, and Zhu Han, “Roommates: An Unsupervised Indoor Peer Discovery Approach
for LTE D2D Communications,” to appear IEEE Transactions on Vehicular Technology.



Bayesian Nonparametric Learning
@

« For multi-dimension data
O Model selection: The number of clusters
O The hidden process created the observations
O Latent parameters of the process 0

* Classic parametric methods (e.g. K-Means)
O Need to estimate the number of clusters
O Can have huge performance loss with poor model
O Cannot scale well

-2 0 2

* Nonparametric Bayesian Learning
O Nonparametric: Number of clusters (or classes) can grow as more
data are observed and need not to be known as a priori.
O Bayesian Inference: Use Bayesian rule to infer about the latent
variables.



Bayesian rule

@

Posterior Likelihood Prior

)

p(u|Observation)=p(Observation|u)p(u)/p(Observation)

1. : contain information such as how many clusters, and which
sample belongs to which cluster

1  : nonparametric

Sample the posterior distribution P(u|Observations), and get values
of the parameter p.




Bayesian Nonparametric Learning: Example

a=2 =2
« A Beta distribution as prior: :

“| prior ‘
L(a+b) .4 b—1 1
Twrm! LA

— Example: a=2, b=2 (head and tail prob. are equal) !

Beta(ut|a,b) =

() 0.5 1

fi
N=m=1

likelihood function

A Binomial distribution as conjugate likelihood:

N '
Bin(m|N, p1) = (m) P (L= p)Nm

— One trial (N=1) and the result is one head (m=1)

4] 0.5 |

Il
 Lead to the Posterior:

a=3b=2
Fim+a+1+0b) * "posterior
(plm, 1, a,b) = el — gyttt g
p(p|m, 1, a,b) Tm + )T +0) [ ( /L)

— Update of parameters given the observations
— Higher probability of head ’

0 0.5 1
[T



Dirichlet Process
@

* An extension of the Beta distribution to multiple dimensions

K
. 1 xq1—
Dir(aq,....ax) = Bla) I l po =l
=1

K
B(Q) _ Hizl F(O‘:i)

K
I'(> . )
O K: number of clusters
O 1i: weight with marginal distribution Beta(c;, Z a; )
O o prior j#i

« Dirichlet Process: G ~ DP(a,H), if for every finite measurable partition
A, ... Acof O

(G(A)---G(A)) ~ Dir(eH(A),--,aH(A))  E[G(A)] = H(A)

O H(:): the mean of the DP
O a: strength of the prior




Bayesian Nonparametric Update
@

* Have t observation x,,...,x, Define N =#Hl:X € A}

* The posterior distribution on ©

(G(A)--G(A ) | X, -+ X ~ Dir(aH (A) +n,, -, aH (A ) +ny)
* The posterior Dirichlet process

o t n
G|x X ~DPla+t,—H +———
a +1 a+tt
[ Small number of observation t, the prior dominates
[ t increases, the prior has less and less impact
[ o control the balance between the impact of prior and trials

] Learn and combine any distributions




Infinite Gaussian Mixture Model

Dirichlet process

Tl ~ ch 1 o)

T, Q © 0600 0O @ Infinite number of classes

Indicators
created according
° to multinomial
distribution.

Observations:

_____ follow a
distribution
such as

@ Inverse Wishart,o(Ao); fix ~ G(jio, Ek/f@ Gaussian.




Chinese Restaurant Process
@
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Inference model: Posterior Distributions
@

* Given the prior and the likelihood, the posterior:

* Probability of assigning to a unrepresented cluster:

P (z#j¥j#iZ_ i, X:a, H) (1)  tis the student-t distribution
(8%
Y G F N 1ve p+1(FHo. Ao(ko +1)/(ko(vo — D +1))).

* Probability of assigning to a represented cluster:

Pz =k|Z_i, X:o, H) (2)
Nk, —i -
~ —a: TN 1tt:n—D+1(P~'-n-. i\n(f‘{-n -+ 1)/(:‘171( — D+ 1))) Intuitive:
Provide a stochastic
ient!
o Ko . N gradient!
Hn = ko + N g L N0 ko + N
kn = Ko+ N, v, =19+ N,
Kon - . S S \T
n 0T Ko + \( fio)( fio)
X = (;’fl + ifg i ;'I‘_-:y\r)/j\'r._



Inference model: Gibbs sampler
@

Start with random indicator
for each observation.

&

4

Remove the current it" observation from its
cluster

A4

Update the indicator z; according to (1) and
(2) given all the other indicators

No

\/

Converge?



Chinese Restaurant Process: Results
@

« Two Gaussian distributed clusters with KL divergence (KLD) 4.5

mr B . Attt ettt = T T T T T L LT 1 | ] -
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 Intuition why it works so well
O Not the boundary or threshold. But clustering so that
each cluster looks more like the distribution (Gaussian)
O No prior information on probabilities



Bayesian Nonparametric Learning: Applications
@

« Smart grid
« Security for wireless devices
« Location based services



Smart Pricing for Maximizing Profit

@

« The profit = sum of utility bill — cost to buy power
O Different shape of loads cost different
O Incentive using pricing to change the loads

O The cost reduction is greater than loss of bills

T o b
A EARE glla]|e
r =T 7 Power “11°211"°
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Wholesale Market
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Load Profiling
@

* From smart meter data, try to tell users’ usage behaviors
O CEO, 1%, audience here
O Worker, middle class, myself
O Homeless, slave, Ph.D. students

— N/ \
N

1 1 1 1
0 5 10 15 20 25
24 feature dimensions h

Feature values kwh
w




Load Profiling Results
@

o Utility company wants to know benchmark distributions
O Nonparametric: do not know how many benchmarks
0 Bayesian: posterior distribution might be time varying
O Scale: Dally, weekday, weekend, monthly, yearly

: : o o Cluster 1

Entire A Profil : ; ¢
12l ntire Average Profile B 14— Lt ) Cluster 2
L ; ; O Cluster 3

Power usage, kwh

04-1"

Projected dim 3
(=]
[s}]
|

2 25 B 0.5 0 05 1 15 2 25 -2

10 15
Load profiles in 24—dimension, h Projected dim 2

Projected dim 1




Security for Wireless Devices

* Prime User emulation (PEU) attack detection

O In Cognitive radio, a malicious node can pretend to be a Primary
User (PU) to keep the network resources (bandwidth) for his own use

O Collect device dependent fingerprints and classify the fingerprints

Q
A

« The Carrier Frequency Difference (CFD)
O Defined as the difference between s | e
the carrier frequency of the ideal [ ®
signal and that of the transmitted \k(

»|
Ll

signal.
O Depends on the oscillator within
each device.

» The Phase Shift Difference (PSD) ]
O Using QPSK modulation technique. @& K)
O Transmitter amplifiers for I-phase and&j ky
Q-phase might be different. 2

Device 1 Device 2

0




Location Based Services
@

» Major tasks to enable LBS:

O Localize.
O Estimate dwelling time 'Q
O Prediction: Where to go next?
; a0
 What's given: 9 @/\‘3}\
O Mobile devices are in indoor environments v

O WiFi scans

« Goals:
O Identifying revisited location <
O Automatically profiling new location
O Online sampling to reduce the complexity
O Predicting the next possible locations New place

,/\
Stationary? -

Not a new place

Online Sampling with Stop WiFi signal
Stopping recording

New place Revisited place

Users feedback
New place Revisited place

Record N new samples &

Update the signature Lib



Location Based Services: Experimental Results

¢ Dataset:
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Location Based Services: Experimental Results
@

 [Future Location Prediction

Gibbs sampler output

9 @
i

Two states

35 — : §
30 —
25 —
o 20 —
@
15 — ) . "0
— Observations inside a rectangle are
10— | from the same location.
— Observations inside an eclipse are
5 ] classified as one cluster according to
| the Gibbs Sampler. _
o+ -
7 e )
s A -
-2 7 A
o] 2 a4 6
Latitude

Normalized time




Learning Methods
@

. Classical Machine Learning
. Bayesian Nonparametric learning
. Deep Learning

Mohammad Abu Alsheikh, Dusit Niyato, Shaowei Lin, Hwee-Pink Tan, and Zhu Han, “Mobile Big Data for Context-Awareness Using Deep
Learning and Apache Spark,” IEEE Network Magazine, special issue on Mobile Big Data, vol. 30, no. 3, pp. 22-29, May-June 2016.

Xunsheng Du, Huaqing Zhang, Hien Van Nguyen, and Zhu Han, “Stacked LSTM Deep Learning Model for Resource Allocation in
Vehicle-to—Vehicle Communication, ” IEEE 86th Vehicular Technology Conference, Fall, Toronto, Canada, September 2017.

Erte Pan and Zhu Han, “Non-parametric Bayesian Learning with Deep Learning Structure and Its Applications in Wireless Networks,” IEEE
globalsip, Atlanta, December, 2014.

Nam Tuan Nguyen, Yichuan Wang, Husheng Li, Xin Liu and Zhu Han, “Extracting Typical Users’ Moving Patterns Using Deep Learning,”
IEEE Globe Communication Conference, Anaheim, CA, December 2012.



Deep Learning: Basic ldea

« Add Hidden Layers in Neural Networks

— > f(WTX + b)

Linear transformation followed by
non-linear rectification

()
(

X
¢
',‘
[

)
\

tput layer

hidden layer 1 hidden layer 2

/
8

input layer

O More parameters
O More non-linear parts




Deep Learning: Motivations

@

« Classic Methods
O Do not have a lot of data, or
O Training data have categorical features
O A more explainable model
O A high run-time speed

« Deep Learning
O Alot of training data of the same or related domain

O Improve Domain Adaptation

O Much slower
O Appropriate scaling and normalization have to be done

Learning Techniques (today) Explainability
(notional)
Neural Nets y
Graphical PEN-. >0 o
Models — >e——— © 5%
Deep . | —— / . 51 @ ——
Learning ) / Ensemble \ o1 50 BB
Bayesian f Met ds— | — & F e
BeliefNets —— = ———~ [ [
—>C— sRL 4 Randern 2 g
CRFs HBNs /- Forests % .
T
o

Stafistical ACSS MLNs — —A L ecisi )
\ ecision —]
odels ~.— Marko \ Trees - — =
SVMs — Model Explainability




Why Now?
@

« Big annotated datasets become available:
OImageNet: |
O Google Video:
O Mechanical Turk
O Crowdsourcing

« GPU processing power @z
NVIDIA.

» Better stochastic gradient descents:
O AdaGrad, AdamGrad, RMSProp



Typical Deep Neural Networks
@

« Convolutional Neural Networks (CNNSs)
* Recurrent Neural Networks (RNNSs)

* Deep Belief Networks



Convolutional Neural Networks (CNNSs)
@

[ INPUT IMAGE 1

{ CONVOLUTION

(LEARNED)

POOLING

Work well in image processing!

C3:f. maps 16@10x10
C1:feature maps S4:f. maps 16{@5x5

5@28x28 SE i i
e Ta s layer c
s@iaxid 50 Y Fssd. layer 0181'PUT

INPUT
3232

I Fullconr{ecﬁon | Gaussian connections
Convolutions Subsampling Convolutions  Subsampling Full connection

LeCun, Yann. "LeNet-5, convolutional neural networks". Retrieved Nov. 2013.




Recurrent Neural Networks (RNNS)
@

» Produce an output at each time step and have recurrent
connections between hidden units
* Long Short-Term Memory

* Unconstrained handwriting recognition (Graves et al., 2009),

» Speech recognition (Graves et al., 2013; Graves and Jaitly, 2014)

* Handwriting generation (Graves, 2013),

* machine translation (Sutskever et al., 2014) Image captioning
(Kiros et al., 2014;Vinyals et al., 2014; Xu et al., 2015)

» Parsing (Vinyals et al., 2014a).




Deep Belief Networks
@

« Each link associates with a probability
« Parametric

hidden variables

Bipartite
Structure

®® @ @

w0 Py Wy
& & & - ‘
™, T T, - P
[ { [ ; P ( Ay )]
R ‘\_h?.f’ R \J/ b Image  visible variables
R € R G The energy of the joint configuration:
Wi fe)---| ) - -3 1 )

E(v.h:8) = — > Wievh; — > bivy — D ajh;
i ¥ i
o e o o . o o & = {1, a, b} model parameters.

« Applied in clustering

G. E. Hinton, S. Osindero, and Y. W. Teh, “A Fast Learning Algorithm for Deep Belief Nets”, Neural Computation. Vol. 18, No. 7,
pp.1527-1554, 2006.




Comparison

@

Convolutional Neural
Networks

Recurrent Networks

Deep Belief Networks

Multiple Layers

Use Back-propagation

Algorithm for training

Can be combined
together to create more

powerful networks

L

Differences

More suitable for data with
grid structures

Much fewer parameters
Very efficient training with
GPUs

Having memory of past
(suitable for tasks like
speech recognition)

Not able to take big input
such as images or videos

Generative model (can
generate realistic looking
data after initializing at
random variable)

Used much less due to
inefficiency



Applications
@

« Computer Vision
* ODbject detection
* Add & repair missing details in high-resolution photo

« Speech Recognition

« Enable a text-to-speech system that is almost in distinguishable
from human voice

« Compose classical music that likely to be created by a human
« Natural Language Processing

* Online Recommendation Systems

« Automatic Driving
» Google Driverless Car

 Wireless Resource Allocation
* Vehicular Communication Network
« Smart Grid



Summary
@

Classical Machine Learning

Bayesian Nonparametric learning
o Non-parametric

o Smart grid & Location Based Services
Deep Learning

o Convolutional Neural Networks

o Recurrent Neural Networks

o Deep Belief Networks



Content

@
Overview of Big Data
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Commercial Systems

Large Scale Optimization

Game Theory based Approaches



Commercial Systems
@

« TensorFlow
 MapReduce



TensorFlow
@

« Adeep learning library open-sourced by Google

« Originally developed by the Google Brain Team within Google's Machine
Intelligence research organization for the purposes of conducting machine
learning and deep neural networks research, but the system is general

enough to be applicable in a wide variety of other domains as well

* Provide primitives for defining functions on tensors and automatically
computing their derivatives.

N r\
Tensor

https://www.tensorflow.org/




Comparison on Deep Learning Libraries
@

 TensorFlow

* G00g|e Comparison of GitHub Commits
for Deep Learning Frameworks

o Caﬁe 800000
° UC-bel’ke|ey 700000

° MXNet 600000
* Theano

* Université de Montréal 400000
° TorCh 300000
200000
Facebook Jpa—
. 100000
* Microsoft CNTK ——'—F—/ —+
0 —
* Neon
=’ S T wvwozZ2z = S S T v oz S5 S s T v oz
o I ntel Tensorflow Caffe - MXNet Torch

Neon




How Does It Work?

@

« Describe mathematical |
computation with a directed graph EEE . mE e
of nodes & edges e "’

O Nodes in the graph represent (tronee [tomsee.] | [”""“_E]_ ]

mathematical operations J, | _
OEdges describe the ilo T @ it
relationships between nodes o— (EED =
O Data edges carry dynamically- I P N
sized multidimensional data —
arrays, or tensors TG



How to Use It?

Illllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll‘llllE::III"

* Programming with APIs

e Define features and labels, loss functions, select
algorithm, set iteration time...

numpy np
matplotlib.pyplot plt

num_puntos 3 = -

optimizer = tf.tra
. train = optimizer.m
conjunto puntos = [] :
init = tf.initialize a

i xrange(num_puntos)

x1 = np.random.normal 5) sess = tf.Se

- sess.runfinit

yl = x1*0.1 + 0.3 + np.random.normal (€
conjunto_puntos.append([x1,y1])

x_data = [v[0] v conjunto_puntos]
y data = [v[1] v conjunto_puntos] data,y data

x_data,sess.! ) sess.run(b))

'‘Original data')




Example: Linear Regression

1 iteration 8 iterations 16 iterations



Commercial Systems
@

« TensorFlow
 MapReduce



MapReduce: Basic Idea
@

« Parallel programming model meant for large clusters
O User implements Map() and Reduce()

« Parallel computing framework
O Libraries take care of EVERYTHING else
O Parallelization
O Fault Tolerance
0 Data Distribution
O Load Balancing

« Useful model for many practical tasks (large data)

http://hadoop.apache.org/



Processing
@

— E
Very — | M L
big | T s A | Pomnomng s D R+l Resul
data n P
- C
— — ] | E
. Map: * Reduce:
* Accepts input » Accepts intermediate
keyl/value pair key/value* pair
« Emits intermediate * Emits output

key/value pair key/value pair



Architecture

zZ “
1

1 1

2 S

o ™ Rv_

< O

m“ =< |

@ | o\

............... © !

wn | W“

“

1

Master node

Slaveg node 2

Workers

user



Three Steps to Use
@
* Indicate
O Input/output files
O M: number of map tasks
O R: number of reduce tasks

O W: number of machines
« Write map and reduce functions
« Submit the job



Example: Word Count

Split data

Split data

Split data

4]
4]

Split data

— ,count—.
— > count—.
— > count—,

— ,count—.

—merge—

* Map()

* Input <filename, file text>
« Parses file and emits <word, count> pairs

* eg. <’hello”, 1>

* Reduce()

« Sums values for the same key and emits <word, TotalCount>
. eg. <’hello”, (352 7)> =><"hello”, 17>




More Distributed Systems
@

« Hadoop: Realize MapReduce
O Offline big data processing
O Web searching
O Parallel computing

« Spark: Working on Internal Storage
O Online big data processing, fast input and output
OO0 Repeated operation for the same data

« Storm: Data Flow
[0 Realtime data streaming



Summary
@

* TensorFlow
O Deep Learning Library

 MapReduce

O Parallel Computing System
O Hadoop & Spark & Storm
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Large Scale Optimization
@

* Multi-block Optimization
« Compressive Sensing
« Sublinear Algorithms



Multi-block Optimization
@

« Generally, optimization algorithms for solving problems of such huge
sizes should satisfy:

« Simple Sub-problem: Each of their computational steps must be simple
and easy

« Parallel Implementable: Algorithm is implementable in distributed and/or
parallel manner

« Fast Convergence: A high-quality solution can be found using a small
number of iterations

min ﬁ(xl) + fg(Xg) s.t. Aixp + Axxo = cC.

XJ_{—:.lll.XQi—:.\.'p_

minf(x) st. Ax=c x; T =arg miny, L£,(xi, {x} }izis A+ |xi—xf 3,

xeX
\ 104

g=0(1/k)

backtracking ls.

"o 50 120 150 200

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.: Cambridge Univ., 2004.




Optimization Preliminary: Dual Ascent Methods

@

« Consider an optimization problem of the form

minf(x) st. Ax=c
xeX

The Lagrangian

L(x,\) = f(x) + A" (Ax —c)

Dual function g(A) = infy L(x,\)

Dual Problem maxx g(A) Lower bound

Optimal solution x* = arg min, E(x, Xk)

Dual Ascent (Gradient Descent) xT1 = arg min, £(x, A¥),
kL — xFe + pk(Axk-l—l _ C)

KKT(Karush—-Kuhn-Tucker) Condition — Strong Convexity

Require an appropriate step size p and assumptions of strong
convexity of the objective function f.



Optimization Preliminary: Method of Multipliers
@

- Introduce an augmentation ||Ax — c||5 to the Lagrangian:

The Augmented Lagrangian: £,(x, Aj = f(x) + XT(Ax —c) + 5||Ax —cll3,

xk+1 = arg min, £,(x, A¥),
Ak+1 — Ak _I_ p(Axk+1 o C),

Method of Multipliers: {

Pros:
O Stable, robust and fast compare with the dual ascent method.
O No need to tune the parameter p during each iteration.

Cons:
O Difficult to decouple and parallelize due to the augmentation ||Ax — c||3



Two Block Optimization: ADMM
@

« ADMM: Alternating Direction Method of Multipliers
(R. Glowinski and A. Marrocco, 1975, D. Gabay and B. Mercier, 1976, S. Boyd, 2011)

« The general form of problem that ADMM can solve is expressed as:

min fl(xl) + fg(XQ) s.t. Aixy + Axxo =c. (1)
X1 EX] X2 EAL

« The augmented Lagrangian for (1) is

ﬁp(xl, X2, )\) = ﬁ(xl) + fQ(XQ) + )\T(Alxl + Aoxr — C)
+ g”Ale + Aorxo — C||%,

» A Gauss-Seidel iterations of x;and x, as follows

k+1 _ - k \k
{ x; T = argmin, L,(x1,x5, A%),

k+1 _ - k+1 k
X, " =argmin,, L,(x;7,x2, %),

AFL = 2K 4 p(A;xET 4 Agxktl — ).

_ . . 1
» Global convergence for convex optimization with a convergence rate 0(;)

R. Glowinski and A. Marrocco, Sur I'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de
problémes de Dirichlet non linéares, Revue Francaise d'Automatique, Informatique, et Recherche Opérationelle, 1975
D. Gabay and B. Mercier, A dual algorithm for the solution of nonlinear variational problems via finite element approximations, Computers

and Mathematics with Applications, 1976.
S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating

direction method of multipliers”, Found. and Trends in Mach. Learning, vol. 3, no. 1, pp. 1-122, Nov. 2011.



Gauss-Seidel Multi-Block ADMM (Seqguential)

@

« Consider the following convex optimization problem

min f(x)=fi(x;)+ ...+ fn(xn),

X1. X2, Xy
st. Ajxj+...+Apnxy =c.
x;eX;, i=1,..., N (2)

* The augmented Lagrangia.n for (2):

N N

N
Co(fxity A) = 3 60x) + AT A — ) + 213 Axi — )3
i=1 2 i=1

i=1

* A Gauss-Seidel Multi-block ADMM:

X; = argmin, Ep({xfﬂ}j@-,x,-, {Xj-(}j>f.,Ak)? i=1,....N.
N = X (S AT — o).

(Block Coordinate Descent...)

M. Hong and Z. Luo, “On the linear convergence of the alternating direction method of multipliers,” online at http://arxiv.org/abs/1208.3922,2012.
C. Chen, B. He, Y. Ye, and X. Yuan, “The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent,”

Online at http://web.stanford.edu/~yyye/ADMM 5, 2014.
B. He, M. Tao, and X. Yuan, “Alternating direction method with Gaussian back substitution for separable convex programming,” SIAM

Journal of Optimization, vol. 22, no. 2, pp. 313-340, 2012.



Proximal Jacobian Multi-Block ADMM (Parallel)
@

« Recall the augmented Lagrangian:

N N
, p
Lo({xiH ) =D fix)+ AT (O Aixi —c)+ 7| > Ax; —cl3
i=1 i=1

i=1

« A proximal term is added to the augmented Lagrangian,
and the update of x; is performed concurrently:

Proximal
x5t —arg min, £, (x; Ky Ak —
i —argming, p(xla{xj Fizis A7)
N = XN p(S AT —e), vi=l...,N.

?

where ||x;||p. = x;' P;x; for some symmetric and positive semi-definite
matrix P; = 0.

* The involvement of the proximal term
O Make subproblem of x;strictly or strongly convex
O Ensure the convergence
O Easier to solve

B. He, L. Hou, and X. Yuan, “On full jacobian decomposition of the augmented lagrangian method for separable convex programming,” online at
http://www.optimization-online.org/DB HTML/2013/05/3894.html, 2013.
W. Deng, M. Lai, Z. Peng, and W. Yin, “Parallel multi-block ADMM with o(1/k) convergence,” online at ttp://arxiv.org/abs/1312.3040, 2014.



http://www.optimization-online.org/DB HTML/2013/05/3894.html

Additional Issues
@

* Indecomposable
FOX) = 106 %0000 %) #= 1060) + T,06) +... i (%)
Decompose to Consensus Problem

f(X)= F (X, Xp0eer Xy ) # T (XL X000 X0 )+ T (X5, %y, ) +o B (X0 XD, Xy )
st X =X
* Non-Convexity

* Relax to convex problems
« BSUM(Block Successive Upper Bound Minimization)

« Mixed-Integer
« Branch and Bound (x; not integer => LX1J & LX1J+1)

S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating
direction method of multipliers”, Found. and Trends in Mach. Learning, vol. 3, no. 1, pp. 1-122, Nov. 2011.

M. Hong, M. Razaviyayn, Z.-Q. Luo, and J.-S. Pang, “A unified algorithmic framework for block structured optimization involving
big data," IEEE Signal Processing Magazine, vol. 33, no. 1, pp. 57 - 77, 2016.

M. Razaviyayn, M. Hong, and Z.-Q. Luo, “A unified convergence analysis of block successive minimization methods for
nonsmooth optimization," SIAM Journal on Optimization, vol. 23, no. 2, pp. 1126 - 1153, 2013.



Summary of Methods
@

« For a non-convex, mixed-integer, indecomposable, large-scale optimization...

Issues Tricks

Indecomposable Consensus problem
Non-convexity Relaxition, BSUM
Mixed-integer Branch and Bound
Deconvergence in Parrallel Update Proximal

Slow in Sequential Update Augmented Lagrangian

« Before those...
« Simulations & Proofs case by case

« Experienced Adaptions
Multi-block algorithms have their own conditions in mathematics except for convexity.



Multi-Block Optimization: Applications
@

« Security Constrained Optimal Power Flow
« Data Offloading in Software Defined Networks



Smart Grid: Big Data

I Operations
N P

—
Service
Provider

\
53.- :
>

L o?
>
- o®
=@

Generation Source: Updated NIST

Smart Grid Framework 3.0
poman \.-_M—/

* The anticipated smart grid data deluge:
O North American power grid: generate 4.15 TB data per day
O061.8 million smart meters deployed in the U.S. by the end of 2013
O Every one million users produce 27.3TB per year



Blackout
@

 Increasing integration between cyber operations and physical
Infrastructures for generation, transmission, and distribution control

* The security and reliability are not guaranteed




Contingency Analysis
@

==120MW 330Mw—Tb

B
@ ®

2 2
/190 MW 330 MW\\ /20 MW

Overload

G¢==120MW
B

330MW== 70 MW |

5| -
®

1
260 MW\

Assume line 1-2 is disconnected.

Generators A and B cannot change productions quickly.

The flows over other lines would increase.

Trigger cascading failure.



Security Constrained Optimal Power Flow (SCOPF)
@

« SCOPF: Minimizing the cost of system operation while
satisfying a set of postulated contingency constraints.

min fO(u®) scheduling objective
{x}5 {u}§
s.t. g2(x%, u®) = 0, power flow equations
h%(x%, u®) < 0, operating limits for base case
g (x“,u) = 0, power flow equations

he(x“,u¢) < 0, operating limits for contingency k

0

u® —uc|]> < A.,c=1,..., C,security constrains

« Challenges:
O Number of constraints is prohibitive.
O How to find the best operating point with a scalable algorithm?

L. Liu, A. Khodaei, W. Yin and Z. Han, "A distribute parallel approach for big data scale optimal power flow with security constraints," 2013
IEEE International Conference on Smart Grid Communications (Smart Grid Comm), Vancouver, BC, 2013, pp. 774-778.

L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih and Z. Han, "Detecting False Data Injection Attacks on Power Grid by Sparse Optimization,"
in IEEE Transactions on Smart Grid, vol. 5, no. 2, pp. 612-621, March 2014.



DC SCOPF
@

* ‘N-1' contingency, corrective setting:

min F8(P&0)
{051 i {Pe}E EZQ o
subject to BY,.60° + P90 _ AsO0pg.0 — 0

bus
c O° + P _ pgcpEc — O,

IB20°| — F.x < O,

|BFO| — Fmax = 0,

PO < p8l0 < pso,

P&€ < P& < P&-c,

(P& — P& < A,

ieg, c=1,...,C,

?

where By, and Bf can be modified from the bus admittance
matrix Yp,s. A8 is the generator connection matrix.



A Distributed Approach by ADMM
@

« Introduce a slack variable p¢ to rewrite |P9° — P9¢| < A, as

P& _ Psc L pf = A, 3)
0<p“<2A.,, c=1,...,C.

» The partial scaled augmented Lagrangian associated with (3)
can be calculated with follows

L,({P& I o {p iy {u 1)

C c
_ p
= 3 EPEO) £ D0 L PEOPEcpe A+ pc3
ieg c=1

* |terate till convergence
O1. Update {P9-9}
O2. Update {P99,p°}
O03. Update dual variable u¢



Distributed Implementation
@

Base Case Contingency 1

) Gather/Scatter
: ))) (Messenger: Dual variable)

Contingency 2 Contingency K

* On multi-core machine
« High performance computer cluster using MPI (message passing interface)
« On cloud using Hadoop or Apache Spark



Numerical Results
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Figure: Convergence performance.

Evaluation setup: Modified data of IEEE 57 bus, IEEE 118
bus and IEEE 300 bus generated by MATPOWER



Multi-Block ADMM: Applications
@

« Security Constrained Optimal Power Flow
« Data Offloading in Software Defined Networks



Mobile Data Offloading

OpenFlow enabled
gateways

>N \\ 7
‘ OpenFlow Controller ‘

E

ANDSFE Access netw.ork dlscqvery
and selection function

B R ) 8
B . (i) \\\ | & I I
“ @ N e X e -
\\\ P @ \ =y
d «» @ “» (@ “p
/
“~._ Base station =<7~ M{lflm\smgll_gglt___A‘,,,/’
TS i T e T ~access points Mobile user

Figure: An illustration of the network model

« Mobile data offloading: Offload traffic from cellular networks to
alternate wireless technologies.

« Software defined network (SDN) at the edge: Dynamically route
the traffic in a mobile network.

Y. Li, G. Shi, W. Yin, L. Liu and Z. Han, "A Distributed ADMM Approach with Decomposition-Coordination for Mobile Data Offloading,"
in IEEE Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1-1.



Problem Formulation

@

Utility of base stations: > i1 Us(xs)
Cost of access points: Yo, La(y,)
Total revenue: Y2 Uy(xy) — 4, La(y.)

Equivalent revenue maximization problem:

A B
min La(y,) — )Y Up(xp), Service revenue
{x1....xg}{y1,yat 32::1 e b;
B
s.t Zyab < (,, Va, Capacity constraint
b=1

Xpa = Yap- Va,b Consensus




Proximal Jacobian ADMM

SDN Controller

________________________________________________________________

Base Stations Access Points

@ Gather: BSs and APs concurrently update x and y, which are gathered by controller.
@ Scatter: Controller simply updates A, which are scattered to BSs and APs

* |terative gather-scatter scheme (Map-Reduce)

. . . )\k )\k
- Signaling: pk, = (yX — Sab), gr, = (xf, + )



Numerical Results
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Figure: Convergence performance

Evaluation setup: B = 5 base stations and A = {5,10} access points. Ca = 10Mbps



Large Scale Optimization
@

« Multi-block Optimization
« Compressive Sensing
« Sublinear Algorithms



Sparse Signal Recovering

Y P x
ek - I
measurements 55?5;2?
M < N

nonzZero
entries

K < M<KN

Sparse x
. Traditional Method: Detect all x

« Random linear projection

Dimension reduction from x to y

O M >Klog(N/K)

Recovery algorithm for ill-posed problem

D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.



LASSO
@

« LASSO: Least absolute shrinkage and selection operator (R. Tibshirani, 1996)

3 itv: | - * For avector x 1
Sparsity: Ly-norm Problem o X[ (7 415 P ot | %)
L,-norm: number of non-zero elements
argmin||®z — y||3 st ||z|lo <k L,-norm: sum of absolute values
zERN L,-norm: sqrt sum of squares

L..-norm: max (X)

1 -
‘ arg min EH‘I’éI? — |3 + Al|z|o
Barrier

xzcRN
« Sparsity Relaxation: L;-norm Problem, LASSO

.1 ~
arg min o || @z — yl3 + |||
xcRN

S. Boyd and L. Vandenberghe, Convex Optimization, Cambridge, U.K.: Cambridge Univ., 2004.



Algorithms

» Classic solvers and omitted solvers (ADMM & BSUM)
« Other algorithms
O Shrinkage Operate
O Prox-linear Algorithms
O Dual Algorithms
O Bregman Method
O Homotopy Algorithm and Parametric Quadratic
Programming
O Continuation, Varying Stepsizes and Line Search
O Greedy Algorithms
O Greedy Pursuit Algorithms
O Iterative Support Detection
O Hard Thresholding

http://www.math.ucla.edu/~wotaoyin/summer2013/lectures.html

Compressive

Sensing
for Wireless
Networks

Zhu Han
Husheng Li
Wotao Yin




Application: Compressive Spectrum Sensing
@

Cognitive Radio Motivation:
O Most of the licensed spectrum is not used by the licensed users

How Cognitive Radio Work
O Secondary (unlicensed) users detect the spectrum holes
(unoccupied spectrum) and utilize the spectrum at the absence of
the primary (licensed) users

Advantage of Cognitive Radio
Improve radio spectrum utilization

Key Enabler 1 sensing wideband
Spectrum sensing (possibly wideband) argmin o||®x — y[[3 + Allz/|:

:EEE N

Y. L. Polo, Y. Wang, A. Pandharipande, and G. Leus, “Compressive wide-band spectrum sensing,” in Proc. IEEE Int. conf. on Acoust.,
Speech and Signal Process. (ICASSP), Taipei, Apr. 2009, pp. 2337-2340.

X.Zhang, Y. Ma, Y. Gao and S. Cui, "Real-time Adaptively-Regularized Compressive Sensing in Cognitive Radio Networks," in IEEE
Transactions on Vehicular Technology, vol. PP, no. 99, pp. 1-1.



Large Scale Optimization
@

« Multi-block Optimization
« Compressive Sensing
« Sublinear Algorithms



Sublinear Algorithms: Motivation & Basic Concept
@

Faster than linear algorithms

« N=size of data, we want o(n), not O(n)
« Sublinear Time

O Queries

O Samples
« Sublinear Space

O Data Stream

O Sketching

« Deterministic Algorithms

_ Resources
Quality of  number of queries
approximation * running time




Sublinear Algorithms: Example
@

» Consider a tall skyscraper building and you do not know the total number of
this building.

« Now you want to test how high a cat can fly.

 When you throw a cat out of window from floor 1, 2, ... n, the cat will survive;

 When you throw a cat out of window from floor n+1, n+2,..., the cat will die.

 The question to develop an efficient method to determine n given that you
have 2 cats.



Sublinear Algorithms: Deterministic Algorithm
@

« Test each floor? 1,2,3,4,5....
O This will lead a linear algorithm O(n).

* Double floors every time? 1,2,4,8,16...
O This will lead to O(log n), but you need O(log n) cats.

« The Two-Cat Algorithm O(«/n)

: i=<=1,1=1
. for the first cat is still alive do

o

| K e

&

test floor ! =1 +1;
l=1—1;

. for the second cat is still alive do

6; {44

5 s 1,3,6,10,15,21,28,...
Output /;

N

%



Future Challenges
@

» For large-scale communication networks:
» Tradeoff between error & computing complexity
» Linear or NP problem (not NP-Complete/NP-Hard) may be already hard to
solve...
« Combination with multi-block optimization

Slides from Dr. Ronnit Rubinfeld’s website http://people.csail.mit.edu/ronitt/sublinear.html

Slides from Dr. Dana Ron’s website http://www.eng.tau.ac.il/~danar/talks.html

D. Wong, Y. Long, F. Ergun, “A layered architecture for delay sensitive sensor networks” http://www.cse.psu.edu/~sxr48/
Dan Wang and Zhu Han, “Sublinear Algorithms for Big Data Applications,” Springer, 2015.



http://people.csail.mit.edu/ronitt/sublinear.html
http://www.eng.tau.ac.il/~danar/talks.html
http://www.cse.psu.edu/~sxr48/

Summary
@

« Multi-block Optimization
O Convergence, Distributed, & Parallel
O Smart Grid & Mobile Data Offloading

« Compressive Sensing
O Sparsity & LASSO
O Cognitive Spectrum Sensing

« Sublinear Algorithms
O Sublinear Convergence
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Game Theory for Big Data Processing
@

 Introduction of Game Theory
« Two Specific Games & Applications



Introduction
@

« John von Neuman (1903-1957) co-authored, Theory of Games and
Economic Behavior, with Oskar Morgenstern in 1940s, establishing game
theory as a field.

« John Nash (1928-2015) developed a key concept of game theory (Nash
equilibrium) which initiated many subsequent results and studies.

» Since 1970s, game-theoretic methods have come to dominate microeconomic
theory and other fields.

« Nobel Prizes

* Nobel prize in Economic Sciences 1994 awarded to Nash, Harsanyi (Bayesian
games) and Selten (subgame perfect equilibrium).

« 2005, Auman and Schelling got the Nobel prize for having enhanced our
understanding of cooperation and conflict through game theory.

« 2007, Leonid Hurwicz, Eric Maskin and Roger Myerson won Nobel Prize for
having laid the foundations of mechanism design theory.

« 2012, Alvin Elliot Roth, and Lloyd Shapley won Nobel Prize for the theory of
stable allocations and the practice of market design.

« 2014, Jean Tirole, won Nobel Prize for the analysis of market
power and regulation.



Introduction
@

- Game theory - mathematical models and techniques developed in
economics to analyze interactive decision processes, predict the
outcomes of interactions, identify optimal strategies

« Fundamental component of game theory is the notion of a game.

A game is described by a set of rational players, the strategies associated with
the players, and the payoffs/utilities for the players. A rational player has his
own interest, and therefore, will act by choosing an available strategy to
achieve his interest (maX|m|ze/m|n|m|ze utilities).

A player is assumed to be able to evaluate exactly or probabilistically the
outcome or payoff (usually measured by the utlllty) of the game which
depends not only on his action but also on other players’ actions.



Example: Nash Equilibrium & Prisoner’s Dilemma

@

« Two suspects in a major crime held for interrogation in separate cells
« If they both stay quiet, each will be convicted with a minor offence and
will spend 1 year in prison
« If one and only one of them finks, he will be freed and used as a
witness against the other who will spend 4 years in prison
« If both of them fink, each will spend 3 years in prison
» Components of the Prisoner’s dilemma
 Rational Players: the prisoners
« Strategies: Stay quiet (Q) or Fink (F)
« Solution: What is the Nash equilibrium/Pareto optimum of the game?

* Pareto Optimum :

Pareto Optimum
Cannot Improve oneself & not damage others. P

* Nash Equilibrium: Best response. P2 Quiet / | P2 Fink
P1 Quiet (1\1 v ﬁ,o
P1 Fink 04 JEE
A \Y

Nash Equilibrium
B



Rich Game Theoretical Approaches

@

 Non-cooperative Static Game: play once
» Repeated Game: play multiple times

« Dynamic Game: optimization utility over time
« Evolutional game

e Stochastic game

» Cooperative Game

« Nash Bargaining Game
» Coalitional Game

« Other Economic Approaches: relevant to the game
« Contract Theory

« Auction Theory
 Mean Field Theory

D. Fudenberg and J. Tirole, Game Theory, Cambridge, MA, USA: MIT Press

T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press, London/New York, 1982; second printing 1989.

Z. Han, D. Niyato, W. Saad, T. Basar, and A. Hjorungnes, Game Theory in Wireless and Communication Networks: Theory,
Models and Applications, Cambridge, U.K.: Cambridge Univ., 2011.

V. Krishna, Auction Theory, Academic Press, 2003.
P. Bolton and M. Dewatripont, Contract Theory. Cambridge, MA, USA: MIT Press, 2005.



Comparison with Optimization Methods
@
 Broad the scope to model a problem
min f (x)

 Non-cooperative Static Game:

Nash equilibrium, Pareto optimum, Stackelberg equilibrium....
 Dynamic Game:

Bayesian Nash equilibrium, subgame equilibrium...

« Cooperative Game:
Nash Bargaining solution, core, kernel, nucleus...

« Some can / cannot be written as an simple optimization problems

« Explain or Deal with the interactions between different entities

« Different entities: service providers, base stations, users, ...
« Explain: Not necessary to solve the problem in a distributed/ parallel manner
« Deal with: Usually need to solve the problem in a distributed/ parallel manner



Two Specific Games
@

« Explain & Deal with the interactions between different entities
« For big data/ large-scale network: fast & scalable

« Matching Theory
« Hierarchical Game

Zhu Han, Yunan Gu, and Walid Saad, “Matching Theory for Wireless Networks,” Springer Science + Business Media, LLC, 2017.

Siavash Bayat, Yonghui Li, Zhu Han, and Lingyang Song, “Matching Theory: Applications in wireless communications,” IEEE Signal
Processing Magazine, vol. 33, no. 6, p.p. 1053-5888, November 2016.

Yunan Gu, Walid Saad, Merouane Debbah, Mehdi Bennis, and Zhu Han, “Matching Theory for Emerging Wireless Networks:

Fundamentals and Applications,” IEEE Communication Magazine, special issue on Emerging Applications, Services and Engineering
for Cognitive Cellular Systems, vol. 53, no. 5, p.p. 52-59, May 2015.



Matching Theory: Introduction
@

 The Nobel Prize in Economic Sciences 2012

Lloyd S. Shapley Alvin E. Roth
Developed the theory in Generated further analytical
the 1960s development

practical design of market institutions



Stable Marriage Problem

« Women and men be

matched
 Respecting their
Adam % indivpidualg
" preferences
{3
Efg Bob
Carl
P!
O DO
David

« Example of preferences: Adam: Geeta, Heiki, Irina, Fran

D. Gale and L. S. Shapley "College Admissions and the Stability of Marriage". American Mathematical Monthly. No. 69, Page, 9—-14, 1962.




Blocking Pair & Stable Matching

=
.
=

G
Ji
&

Adam Geeta

Heiki

Geeta prefers Carl to Adam!

Blocking Pair

Carl Fran

Carl likes Geeta better than Fran!

Stable Matching: No blocking pair.




GS(Gale-Shapley) Algorithm
@

* The Gale-Shapley algorithm can be set up in two alternative ways:

— men propose to women
— women propose to men

« Each man proposing to the woman he likes the best

— Each woman looks at the different proposals she has received (if any)

— retains what she regards as the most attractive proposal (but defers from accepting
it) and rejects the others

« The men who were rejected in the first round
— Propose to their second-best choices
— The women again keep their best offer and reject the rest

« Continues until no men want to make any further proposals
« Each of the women then accepts the proposal she holds
* The process comes to an end



GS Algorithm

T
Nl
=

Adam, Bobh, Carl, David

Fran
/q & ‘ " ]
Irina, Fran, Heiki, Geeta gyl Carl, David, Bob, Adam

Geeta

Carl, Bob, David, Adam

Adam, Carl, David, Bob




GS Algorithm

j Geeta, Heiki, Irina,
Fran

Adam
2 2)
i Irina, Fran, Heiki, Geeta ¥
, o %
Bob This Is a stable Geet
=3 matching
Geeta, Fran, Heiki, Irina
Carl Heiki
A R
Irina, Heiki, Geeta, Fran “';Q-
L1 !,'.

David Irina

Carl > Adam

David > Bob



Properties of GS Algorithm
@

« Complete matching: everyone gets married
« Stable matching: no blocking pair
* Runtime complexity: O(n?)



Application: Full-Duplex OFDMA Networking
@

 One BS, M transmitters (TXs), M receivers (RXs), and K subcarriers

« Atransceiver unit — Mbll o)
« Self interference between /_ "
antennas 0 /‘) o .

- Transceiver-subcarrier pairing |
— One TX can only be paired with one RX o meSatn
— One subcarrier can only be paired with one TX-RX pair

 The transmit power of the BS is fixed

* Objective: matching the TXs, RXs, and subcarriers to each other and

adjust the BS power level in each subcarrier such that the total
network’s sum-rate is maximized.

Boya Di, Siavash Bayat, Lingyang Song, and Yonghui Li, “Radio Resource Allocation for Full-Duplex OFDMA Networks Using
Matching Theory,” IEEE INFOCOM - Student Activities (Posters), Toronto, Canada, May, 2014.

L. Song, Y. Liand Z. Han, "Resource allocation in full-duplex communications for future wireless networks," in IEEE Wireless
Communications, vol. 22, no. 4, pp. 88-96, Aug. 2015.



Simulation Result
@

« Random matching algorithm:
= e ; e s
the TXs, the RXs, and = ... TSN SR R - |
subcarriers are randomly R et S s T

% _ M=5, K=7
) = o P S o
matched with each other g | e T 5 =
Ef’ 50’“+\ .;M:‘,,K:ﬁ“
g D B T e A ;_$- ................. o
° 1 . D 40| - fomenes B R T AR RERE feweinnn e
Complexity level: the 2 ; e e e
35_ ................. _ .................. : -'..--..-:‘.:‘-+:--E ......... ".'.,\..\.‘...E ......... —

iteration number is much = (O D w90
-—4--- Centralized : M, 5K56 TS St

Smaller than that Of the 2sf-{ —+— Random |- .................. ..... |

on ; ; ; ;

centralized algorithm 0 5 10 18 20

« The performance is close to
the centralized algorithm



Two Specific Games
@

« Explain & Deal with the interactions between different entities
« For big data/ large-scale network: fast & scalable

« Matching Theory
« Hierarchical Game



Hierarchies in Large-Scale Networks
@

« Ubiquitous Hierarches in Large-Scale Networks

Architecture Hardware Software Algorithm

Network Controllers Personal Devices Problem

Upper ‘_. ._. g g @/ Controller mian,-;r,-. s$EN=0

L,
e At+1) = A(t) + A
(Dual Update >
Lower xi(t) = argmin fi(z:) + p|AJ*
Layer

Primal Update

Z. Zheng, L. Song, Z. Han, G. Y. Li, H. V. Poor, “Game Theoretic Approaches to Massive Data Processing in Wireless Networks,” to appear
in IEEE Wireless Commun. Mag.




Hierarchies in Large-Scale Networks
@

@‘ Controller: Task to achieve

| -

u u u Agents: With selfish objectives

Challenge:

* Agents optimize selfish objectives rather than controller’s

* Need incentive mechanisms



Hierarchical Game with One Leader & One Follower
@

- Controller’s/ Leader ‘s Objective: min g(X)
- Agent’s/ Follower ‘s Objective: minh(X)

« Incentive: Let follower achieves leader’s optimum rather than its own

 Problem Formulation as a Game
* Leader’s game:

argmin,, g(x) + 6x

mind(é,. x)
- Follower’s game: min B %) min ®(6,.x)
argmin h(x)—6x //»\ \“\,
min A(x) min g(x)

x . variable controlled by follower

@ : price from leader to follower




Hierarchical Game with One Leader & One Follower

» Leader: give price & ask follower to minimize an incentive function

* Incentive Function Design

min ®(4, X) = g(x) + h(x) — Ox

SN

Lear’s utility Follower’s utility Payment

» Hierarchical Game Update

dh(xp)
O Leader’s Update 9p+1 =

dx mind(é,. x)
O Follower’s Update X,,, =argmin ®(@,.,,X) i {(G.2) min ®(6,.x)

Marginal Cost //‘\ \M\«.

min A(x) min g(x)




Optimum Properties

» Relaxed Stackelberg Equilibrium
O Optimum of Leader’s Original Objective: minx g(x)

O Optimum of Incentive Function: mMin, ®(&,, x) = g(x) +h(x) — & X
O Optimum of Follower’s Utility:  min, h(x) -6 x
O Same Optimum: | min, g(X)
{minx h(x) -8, x
O Not Optimum of Leader’s Utility: min, g (X(H)) (9-(X((9)) Not idealized

 Conditions: mind(6),, x)

min®(6,,x) min @(6,, x)
O Strongly convex leader’s utility function \’\.
O Convex follower’s utility function min h(x) min g(x)

O Uniform Lipschitz gradient for follower’s utility function




Convergence & Scalability Properties
@

« Just like Gradient Descent/Ascent :First-order numerical optimization

O Linear Speed: € =0(1/ p)
O Scalability

N
argmin,, > g(x)
i=1

argmin, h;(x) -6



Hierarchical Game with One Leader & Multiple Followers
@

* Leader’s game:

N N
argming, " 6,(x)+ 0%
. Followers’ game: =
argmin, h(x) 0%

 Constraints:

Z. Zheng, L. Song, and Z. Han, “Bridging the gap between big data and game theory: a general hierarchical pricing
framework”, accepted by IEEE Int. Conf. Commun. (ICC17), Paris, France, May 2017.

Z. Zheng, L. Song, and Z. Han, “Bridge the gap between ADMM and stackelberg game: incentive mechanism design for
big data networks,” IEEE Signal Process. Lett., vol. 24, no. 2, pp. 191-195, Feb. 2017.

Huaqing Zhang, Yong Xiao, Shengrong Bu, Dusit Niyato, F. Richard Yu, and Zhu Han, “Computing Resource Allocation in
Three-Tier 10T Fog Networks: a Joint Optimization Approach Combining Stackelberg Game and Matching”, IEEE Internet
Of Things Journal, Special Issue on Fog Computing in the Internet of Things, vol. 4, no. 5, p.p. 1204-1215, October 2017.



Deal with Constraints with ADMM
@

dh ()

- Leader’s Update 6°*" =
dx.

 Followers & Leader’s Coordination

O Sequential Follower’ Update

X (t+1) =argmin, @, (6", x )+ AAX +§| AX +iiAkxk (t+1)+iAka(t)-B &

i+1

O Leader’s Dual Update

N Controller D
At+D) = A(t) - p| D AX(t+1)-B
— Dual
Price Current
(Marginal <ADMID Resources
Cost) Prima
I Coupling :
I
——»  Agent Agent — 1
| |
I Incentive |

— e em e e e e e e e o e e e




Optimal Properties

» Relaxed Stackelberg Equilibrium \
O Optimum of Leader’s Original Objective  argmin,, > g;(x)
i=1
O Optimum of Follower’s Incentive Function

O Optimum of Follower’s Utility

N \
O Not Optimum of Leader’s Utility  arg min{e}Zgi(xi)
i=1

 Conditions:

Decomposed utility functions for the leader
Linear constraints (Convex can be right)
Strongly convex leader’s utility function

Convex follower’s utility function

O O 0O 0 0O

Uniform Lipschitz gradient for follower’s utility function



Convergence & Scalability

@

O Linear Speed on Outer Loop :
O Scalability on Outer Loop

:S%WJ

107 F

0i (Xi) :l X |2
h (%) = exp(x;) ;

e=0(1/p)
Leader’s Optimal Objective
oo Without Incentive Mechanism
v=ir= Stackelberg Game based ADMM |5
‘f ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
=y
‘.—
‘.
\
EY
£y
¥,
‘ i
ﬁ r
*fT
S a2 V- s
» 0 % 2 5 p o

Iteration Time (k)

Linear Convergence Speed



Hierarchical Game with Multiple Leaders & Multiple Followers
@

¢ Ut|l|ty of Each Leader K Controllers (Leaders)
N
min Gi(Xix) = Z 9i,; (Ti ;)
. o1

*  Utility of Each Follower

I;llllH Xy j) E hi (i )
*.]

N Agents (Followers)

x; j - resources provided from agent j to controller 7

Z. Zheng, L. Song, Z. Han, G. Li, and V. Poor, “Multi-leader multi-follower game-based ADMM for big data processing,”
IEEE Int. Workshop Signal Process. Advances Wireless Commun. (SPAWCL17), Sapporo, Japan, Jul. 2017.

Z. Zheng, L. Song, Z. Han, G. Y. Li, H. V. Poor, Game Theory for Big Data Processing: Multi-Leader Multi-Follower
Game-based ADMM, submitted to IEEE Trans. Signal Processing.

Huaqing Zhang, Yong Xiao, Lin X. Cai, Dusit Niyato, Lingyang Song, and Zhu Han, “A Multi-Leader Multi-Follower

Stackelberg Game for Resource Management in LTE Unlicensed”, IEEE Transactions on Wireless Communications, vol.
16, no. 1, pp. 348-361, January 2017.



MLMF Game-based ADMM

Outer Loop: Leaders’ Price Update
dh, ,|.r""' |

»41
I
ll! l
ar;

Leaders: Parallel Dual Update v ((.‘__ Lot s ) ))

Leader 1 Leader 2 Leader K

grt1) APt +1) l l l "t 2P(t +1) z'?

Follower 1 E> Follower 2 |:> |:> Follower N

X7t +1) x5t +1), x5 X2t + 1. x50 4 1),.... X, vy (E4 1)
. [J T. HIEN) srpuin & X [N \l‘ My '
Followers: Sequential Primal Update R ) ey (Iktg ) L XA
.\_.:E"‘ \__:\ n

Inner Loop: ADMM




Game Theory for Big Data Processing

@

« Motivation

 Introduction of Game Theory
* A General Hierarchical Game
« Applications



Hierarchical Game: Application for Edge Caching
@

« Limited backhaul resources vs excessive streaming
« Anticipated file demand popularity by service provider (SP)
« SP proactively transmits popular files to a large number of edge nodes (ENS)

O ENs - base stations, small-cell base stations, or WiFi access points

Storage
File

_____________

Z. Zheng, L. Song, Z. Han, G. Y. Li, H. V. Poor, A Stackelberg Game Approach to Proactive Caching in Large-Scale Mobile Edge
Networks, submitted to IEEE Trans.Wireless Commun.

Huaging Zhang, Yanru Zhang, Yunan Gu, Dusit Niyato, and Zhu Han, “A Hierarchical Game Framework for Resource Management in Fog
Computing,” IEEE Communications Magazine, special issue on Fog Computing and Networking, vol. 55, no. 8, p.p. 52-57, August 2017.

Huaging Zhang, Yong Xiao, Shengrong Bu, Richard Yu, Dusit Niyato, and Zhu Han, “Distributed Resource Allocation for Data Center
Networks: A Hierarchical Game Approach,” accepted IEEE Transactions on Cloud Computing.




Stackelberg Game-based ADMM
@

* Objective

 Minimize total backhaul for SP

» Application of the Stackelberg game-based ADMM
* One SP (controller) and multiple ENs (agents)
MLMF game-based ADMM reduces to Stackelberg game-based ADMM

« SP pays for the ENS’ backhaul & storage resources



Backhaul Utility
@

Average backhaul resources vs demands change times

— Optiminm .
= = = Stackeberg Game—based ADMM D 20 F||eS
% = EETE A Popularity—based Caching .
S R D R:tidom Caching : D 100 ENS
et T 1 1000 Users
o .oeeesl 4 Popularity-based
oL e L e P T T caching: cache the most
e popular files on ENs
15
0 Random caching: cache
, , , , , | , , , | files randomly
! 2 4 6 8 10 12 14 16 18 20 22

O Cost less backhaul resources than popularity-based caching & random caching

O Cost more backhaul resources when users change file demands more frequently



Convergence Speed
@

Average iteration time vs Number of users

J.o.m_m m s mom - - e e — e —— 0 om o= : L L. .
§--F T o pmmwe=E T 0 20 Files
T 00 10, 50, 100 ENs
- -
18 R 0 1, 6,12, 24 Demand Change
-
7k [0 Accuracy: 102
2 i
=16r » 7
—_— ." I
15} ¢ I' —_—T=10, T=1
F
e T K=50, T=1
) - = =K=100, T=1
1al - m =K=100. T=6
) = M =K=100, T=12
12 K=100, T=24
1_1 1 1 1 | 1 | 1 1
100 200 300 400 500 600 700 800 900 1000
N

O Iteration times: change sub-linearly with the number of Users & T
O Iteration times: keep below 2.



Summary of Game Theory

@

* Provide more possible approaches in modeling and solving

* More specific algorithms are needed in the future

Yooy Thang
Zhu Han

| Matching ! Contract

Theory for Theory for
Wireless Wireless
Networks Networks




Summary of Tutorial

@

- Signal Processing Methods for Future Communication Works

o Learning Methods

o Commercial Systems

o Large Scale Optimization

o Game Theory based Approaches

www?2.egr.uh.edu/~zhan2/big_data_course/

wireless.egr.uh.edu/research.html

SIGNAL
PROCESSING

AND NETWORKING
FOR BIG DATA
APPLICATIONS

Zhu Han, Mingyi Hong,

and Dan Wang
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