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Carbon Sequestration and Gas Leak Scenarios

Carbon Sequestration After-injecting monitoring Gas Leak from a facility
Injecting Scope Induced-seismicity alarm example
Gas Leak alarm

CARBON CAPTURE
Natural Gas Well Site

hydraulic
fracturing fluid

University of Houston
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Carbon Monitoring Challenges

Various Sensors of Carbon

Monitoring
A Top-Down
Continental to e
Bk e _ Challenge 3: Processing large-scale
C remote data with regular methods that
e need human interaction involved is
iy N inefficient and hard to scale up to the
Regional ; _ , global scale
@ (10-1000 km?) ‘ B
8 lit — long time series
(%) measurements and
© 1175 some instantaneous .
g — regional or single facility = Cha”enge 1 DeS|gn a network to
w) . . . .
B rem—y cover the monitoring of field scale with
o ; Measurements done I
Faiitytosite | | : fad.m‘e”;""“t""' grid sensor network |
~ instantaneous or — needs massive regular point
et sensors which cost budget issue.
ndivi 5 intaneousrforlongr T . . .
" ouree w . durations | Challenge 2: Leakage is uncertain in
e e - T terms of large-scale potential leak
Temporal Scale locations and environment conditions
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Data-driven Optimization Methods

» Optimization Classification

Optimization

Optimization under uncertainty
Stochastic Distributionally Robust Robust
Optimization (SO) Optimization (DRO) Optimization (RO)

University of Houston

23-Apr-24 6




Robust
Optimization

min max h (x, &)

Stochastic
Optimization
min £, [h(x, §)]

Probability distribution of random parameters is unknown,

but the range is known

Obij. function : find a decision x that minimizes the worst-case cost over
an uncertainty set

]
100 600

# of detection time

Probability distribution of random parameters is known

Ob;j. function : find a decision x that minimizes a functional of the
expected cost.

PMF

100 200 300 400 500 600

# of detection time
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Distributionally
Robust
Optimization

min max Ep[h(x,&)]

rpg?l;g}gﬁp[h(x,f)]

« Random parameters are uncertain

» Probability distribution of random parameters is uncertain

» ODbj. function : find a decision x that minimizes the worst-case expected
cost over an uncertainty set

PMF

O

A

100 200 300 400 500 600

# of detection time

PMF

A

100 200 300 400 500 600

# of detection time
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Contributions

» Contribution I: Developed a mathematical
framework for optimizing carbon monitoring
sensor placement with stochastic programming to
address leak source uncertainty.

» Contribution Il: Enhanced the sensor placement
framework using distributionally robust
optimization to tackle both leak source and
environmental uncertainties.

» Contribution Ill: Advanced carbon monitoring
capabilities by integrating machine learning
techniques for improved signal processing and
data accuracy in variable conditions.

University of Houston
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Monitoring Sensor Placement

Wireless Geophone

‘ Gateway ‘ Node
() P T E
R e

Geophone placement QL@ ———(‘i\’(’) Methane sensor placement
Induced-seismicity alarm (((,,){ \ @) Wireless Gas Leak alarm

A )/ sensor
& network

hydraulic
fracturing fluid

N —

D Permeable
[ 1mpermeable

University of Houston
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Data Driven Optimizations

[ Robust Optimization ]

(RO)
min max h (x, &)
x€Exy ¢&€U
-- Decision variables Benefits:
-- Uncertain Parameter Be able to solve optimization problem with uncertainty

-- Convex set of feasible solutions
-- Uncertain set

h(x,&¢) -- Objective function in x that depends on parameters &

R Y R

Choose an intermediate approach to obtain a robust form of distributed optimization problem (DRO):

Stochastic in E-[h : E.Th Distributionally
[opﬁmizaﬁon <o) Jm‘;? plh(x = minmax Ep[h(o OV | - Robust © 0

P is an uncertain set of probability distributions constructed from the samples.

University of Houston
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Discrepancy-based DRO

Motivation
« In many situations, we have an empirical estimate of the underlying probability distributions.

« A natural way to hedge against the distributional ambiguity is to consider a neighborhood of the
empirical probability distribution

Discrepancy
Ambiguity sets based on probability distance:

P ={P:d(Py,P) < ¢}

Py -- Empirical probability
5 -- Radius
d(Py, P) -- Metric of the similarity of two distributions

By selecting a suitable metric, certain infinite-dimensional convex DRO problems can be
transformed into finite-dimensional convex optimization problems

Is there a metric that is simple to calculate and Wasserstein
suitable for discrete / continuous distributions? distance

University of Houston

23-Apr-24 13




Discrepancy-based DRO

Wasserstein distance

used to measure the distance between two distributions.

Definition:

dy (P, Py) = inf IE':(x,y)fvy [llx = yIl]
Y~11(P1,P2)

[1(Py, P,): the set of all possible joint distributions of P, and P,.
(x,y)~y: samples under joint distribution y
lx — y||: sample distance

Ex )~y Lllx — yll]: expectation of distance for sample x and y under joint distribution y

Wasserstein distance of Py and P,: the lower bound of this expectation.

University of Houston
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Discrepancy-based DRO

Woasserstein distance

P, |
.

P*:transportation ™
plan

(empirical dist.)

P,

[1(P;, P,): transportation plan
lx — y||: distance the soil moves

Y (x,y): amount of moving soil from x to y
Move mass P; into the shape and position of P,.

E(x,y)~y [llx — yl]: bulldozing cost

Bulldozing cost : amount of moving soil multiplied by the distance the soil moves.
Wasserstein distance: the smallest bulldozing cost from P; to P,.

University of Houston 23-Apr-24 15




Discrepancy-based DRO

Woasserstein distance

Wasserstein distance-based ambiguity set:

B:(Py) = {Q:dw (P, Q) < €}

« The ambiguity set Q can be viewed as a Wasserstein ball which contains all probability
distributions whose Wasserstein distance to the empirical distribution Py is less than «.

« Q will cover the true distribution with a higher probability with a larger value of «.
« There exists a trade-off between the accuracy and the complexity
* Itis important to well design the value of ¢

University of Houston
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Discrepancy-based DRO

Woasserstein distance
How to calculate ¢ of ambiguity set

fix)

Light-tailed distribution assumption: Distribution P is call light-tailed i Exponential
a > 1 such that O "Hffm@ Tailed”
EP [exp(l¢]*)] = / exp([[€]|) P(d€) < oo. Crghted

—

The assumption guarantees that the ambiguity set can cover most of the possible distributions.

Radius selection: Number of samples 4 Confidence level 28 Radius selection

( log(c1 8~ 1/max{m,2} N> log(c18~1)
en(B) = « e e
| (log(clﬁ-l))”‘* (W< logleis™)
L ca N co .
Number of samples
23-Apr-24 17




Sensor Placement under Uncertainty Example

Sensor Placement under uncertainty example Historical detection time data for sensor A/B
Faster is better

Sensor Objective Function

Scenario: 1 leak source, 2 sensor candidates Distributions
> 1
5
. o 0.5
158 ot 1B :
O 1 2 3 4 5 6 7 8
Detection time/s
H Sensor A mSensor B
_ Robust Optimization Stochastic Optimization
=15 > 15
Q9 =
81 S 1
(@) ©
& 0.5 I I °
0 a 0.5 :
0 1 2 3 4 5 6 7 8 '
Detection time/s 0 o s e s e 3‘
m Sensor A mSensor B Detection time/s
m Sensor A mSensor B
23-Apr-24 18
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Sensor Placement under Uncertainty Example

Sensor Objective Function
Distributions

:-(_% 0.6
2 =
o

0.2
o 1| [
0 1 2 3 4 5 6 7 8 2= %‘dAworst—D‘ + %|dAworst—2| =+ %|dAworst—6|

Detection time/s
mSensor A mSensor B 1 1 3
2= 16— 0|+ 116~ 2] + §/6— 6

+ (((“Q.))) += Optimization

With DRO method we can chose the right sensor while oL L
Detection time/s

other robust optimization method cannot in this scenario. mSensor A & Sensor B

University of Houston

Distributionally Robust

Probability
N

7 8
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Problem Formulation 1: Optimal Detection Time

TABLE I: Tables of Symbols

min € drfxeja . . . . .
z ;p ; Objective: Detection time Expectation Symbol Meaning
e€& The collection of all events.
L The group of all potential sensors.
vy €{0,1} VIelL, L. The set of sensors that can detect event e
Pe The probability of event e taking place
Z iy < ¢ de,i The jcialllage ‘:’:oefﬁ?ier?t fi?r pfzis?sive—s'eism'ic. event e at location @
9 =5 Xe i Binary variable indicating 1f location ¢ first detects event e
reL Y Binary variable indicating sensor presence at location [
<z.,<1 Vecé, iclL,. Cy The expense asr,‘o{?iated 1wirh Sensor 4
B i c The allocation of funds for the sensors
Se passive-seismic source spatial location for event e
Z T.;=1 Yeck, Se Predicted passive-seismic source spatial location
ieL, for event e with heuristic optimization
s, passive-seismic source spatial location ground truth for the event e
Tei<y; Veel& i€ L, Observation of passive-seismic wave-arrival time.
Measurement of passive-seismic wave-arrival time.

tobs
t

F Ray tracing forward operator.
U Subsurface velocity model.

23-Apr-24 20
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Problem Formulation 2: Optimal Sources Localization

min Z peMSE(s,, ), . . : TABLE I: Tables of Symbols
e Objective: Localization Accuracy Expectation
: Symbol Meaning
e€& The collection of all events.
L The group of all potential sensors.
S = arg min lMSE(thSj t), L, The set of sensors that can detect event e
Se Pe The probability of event e taking place
de,i The damage coefficient for passive-seismic event e at location ¢
Xe i Binary variable indicating 1f location ¢ first detects event e
t = _}'—'(yj U, Se)a Y Binary variable indicating sensor presence at location [
Cy The expense associated with sensor @
c The allocation of funds for the sensors
Z cy < c, Se passive-seismic source spatial location for event e
- Se Predicted passive-seismic source spatial location
el for event e with heuristic optimization

passive-seismic source spatial location ground truth for the event e
tobs Observation of passive-seismic wave-arrival time.

t Measurement of passive-seismic wave-arrival time.

F Ray tracing forward operator.

U Subsurface velocity model.

yi € {0,1} Viel.

23-Apr-24 21
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Passive-seismic Sensor Placement Optimization Workflow

Detection time optimization workflow Localization accuracy optimization workflow
Sensor ! . Sensor Potential microseismic event

\:::BHI? candidates’ Fuhn;;mfml:: I:mﬁ: rees ":I::;tly candid.ates' sources' position (wells,
positions and stress concentration zone) pasitions o;:‘:::::::gﬂf’:::e)

+

Physical-based Physical-based Sensor
Microseismic Wave Microseismic Wave : < Localization errors
. . . . . . locations
Propagation Simulation Propagation Simulation
Microseismic Microseismic Microseismic event sources
Scenarios Scenarios localization Inversion

Sensor Sensor

Placement Placement
Optimization Optimization

Sensor Optimal
locations Sensor
locations

University of Houston
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Passive-seismic Sensor Placement Optimization Results

Same Budget Placement strategies When budget increase, both Same performance, SO method

for detection time and localizations methods performance converge use less sensor budget
2.00
10000 - —— Stochastic Optimization 10000
1.757 \ ---- Regular
8000 1504 ! 8000 -
“u \
o \
1.254
6000 £ ‘1‘ 6000
> 6 1.00{ §
(9] N
4000 1 0 0.75 ——== 4000
46 -
)
2000 A 0.50; 2000
Sources
Regular network 0.25 1 Sources
Detection time Optimization Regular network
0 - Source localization Optimization 0.00 . 1 1 . 0 - Detection time Optimization
0 2000 4000 6000 8000 10000 ' 20 40 60 80 0 2000 4000 6000 800010000
X Number of sensors/sensors X/m

Results

1. Achieve 20% higher performance with same budget.
2. Achieving same performance level with less sensors.

University of Houston 23-Apr-24
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Problem Formulation 3: Optimal Worst Detection Time

b ]

, Inner Problem Formulation
min Pe sup E(Q)x. (1) . .
T ; EZL oup Q) Minmax obj .~ max E(Q) Inner Max
e € " N d.
: QeB, " Obj
subject to subject to
de,'i P . -
Yu<e 2) cost B :={Q € Gy : Dw(Q. T) < &}, ©Uncertainty set
lel H 2H .
K= (ﬁ) log <ﬁ) : aoUncertainty Level
Tei<y; Ve€& i€ L, 3) Earliest detection Estimation
EXISt Symbol Meaning
e ; ; €& The set of all ts.
2 tei=1 Veed, @ Earliest detection | | “; The st o all candidte semsors
i€Le SOIe L The set of all sensors that are capable of detecting event e
Pe The probability of occurrence for event e
y € {0,1} VIeL, (5) ) de.i Damage coefficient for leak event e at location %
Blnary d;__z— Worst-case expectation of d. ; under uncertainty.
Tei Indicator for location ¢ that first detects event e
0< Tei <1 Vecé&, i€ L., (6) Ear“est detectlon gg Binary variable 1ndlc’:;‘;i:gcéitaos;er‘::$01: ;nstalled at location [
Range c The sensors’ budget
p K The radius of the uncertainty ball
Bt :={Q € Gy : Dw(Q. T) < k}. (D Uncertainty set B! Uncertainty set
Q Arbitrary distribution within uncertainty set
T Empirical distribution of d,. ;
Gy The set of all probability distributions
Dw Wasserstein distance
S Number of historical data for empirical distribution
0 . H Number of bins for empirical distribution
Main Problem Formulation N Confidence level
University of Houston 23-Apr-24 24




Methane DRO Worst Detection Time Optimization Workflow

Hi ical Wind Wind Leakage Potential leak positions
IS(; ohea Speed direction rates (wells, pipelines and )
ata plants) | \ A
“““““ Physi 1| based 1 Distributionally | | =
|’ Numerlcal \ ySICa. a.se . . . 1 1 N B baseline
' Simulation :» Methane Dispersion Uncertainty Estimation < ?ﬁbust E
- - I

. Software | SlmuLIatlon NS eory ' ]

10 Worst-case |

. Scenarios under

i uncertainty e 75 0 75 me w5 do ms o

Sensor

Placement
Optimization

Using the distributionally robust

One leak scenario example: Sensor expectation of worst detection
Red star: leak source ocations timpe under uncertainty for sensor
Plume: methane propagation after 24 hours -ertainty
A I placement optimization.
- I
fos
P

23-Apr-24 25
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Methane DRO Worst Detection Time Optimization Simulation under Wind

Perturbation

Simulation cube

e « Simulate 74 leakage events as observed events
4R optimization database
T . « Test baseline wind speed average method, Stochastic
s3iisi. 3 L
$pi = optimization and DRO results on unseen dataset
"‘?:5 st contains 148 leak events.
ot 1 ‘: .: . g ‘90
o * > \60 7080
4 ‘mjo\;o"e\
TABLE Il
W|nd Speed TESTING ACCURACY
Original Methods Testing Accuracy of in-sample events | Testing Accuracy of Out-of-sample events | Accuracy Regret Value
12 w0 MEAN [17] 100% 79.73% 20.27%
T SO [19] 95.95% 84.46% 11.49%
e A DRO 95.95% 87.16% (8.78%)
E‘ /, \ \ ’/ \
g I\ prNE N A\ TABLE Il
- 8 / \ // i | TESTING OBJECTIVE
= -\\ \ / N
- / TN Y \ / Methods Testing Objective of in-sample events | Testing Objective of Out-of-sample events | Objective Regret Value
6 TN MEAN [17] 16.97297297 24.79054054 -71.81756757
SO [19] 17.97297297 20.11486486 -2.14189189
i DRO 18.55405403 18.86486486 C0.31081083)
0 5 10 15 20 ——
Datetime

University of Houston
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Carbon Sequestration and Monitoring involved

Cost-intensive Subsurface Surveys

Pre-injecting survey

Carbon sequestration requires subsurface surveys (imaging, well-logging) to design injection plans and monitor injection safety

Carbon Sequestration Pre-injecting survey
Injecting Scope Imaging

stored V2 \
Produﬁed oif

Physical
containment
under caprock

Shale
\ (caprock)

@ sand ) Mineral
(storage unit) formation
&D Carbon dioxide reaction
@ Native groundwater . CO, dissolving
Bearna i Trapping of ¢, di vin
& Carbon bearing mineral separated into water

droplets

University of Houston 23-Apr-24

Well-logging

W\M\m\ml_
S




Machine Learning Methods: Lower the Energy Transition Friction

Benefits:
1. Be ableto processing large scale data automatically
2. Be able to learn complex high dimensional pattern

Supervised Learning Self-supervised Learning Reinforcement Learning

e — ot Agent Environment
; . NI — ][]0 ¢ (Fromstate s, take action a

é; : T"C'ini"og_>MLModel Predl;tlon — Autoencoder 0 0
U ’Qo %ﬁ"ﬁ * »
® ; O 0 Q- D OdU o=

i Apple
N
° °
o ' :
Training Data n n
-
Testing Data Input Reconstruction
: al B

rror| Get Reward R, new state s’

Challenge:
Generalization: the practice data distribution is different from the training dataset

University of Houston
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Subsurface Imaging-Denoising

Challenge: The seismic data acquired from the field has noise such as swell |
and monochromatic noise and the traditional denoising method has limitations |
which also would attenuate the signal when performing denoising T—

[ » O Trust-band m dobs
_t misfitloss True Model Observed
Data _
", -E:m?wr‘se- \ "’ ; /- — R\ 0d = dobs — dcal
Construct trust frequency spectrum mask multiplication | ' — \\:\\\_ Scattering Data
1D FFT p N —
1 @ ) P ———
U pd ate Forward P
= — K oo -H e/
"l 1
vy ¢ A Incident Model Calculated
/ Blind trace neural network w (Known} Data
\ 3 Ly deal
Line detection Mask generatlon multlpllcatlon :..-_,_:—:_{-f_{ . /| ——
Blind Trace Signal =
Optimized
Autoencod_er can only Iearr_l Mode! Perturbation
reconstruct signal remove noise. om
University of Houston 23-Apr-24 30




Self-Supervised Learning Results

———
— @ <
4| , Entry-wise A
! Construct trust frequency spectrum mask multiplication !
L)

misfitloss
(a)

s

IDFFT

/

Blind trace neural network

| ! Receiver Wavenumber Receiver Wavenumber
~ N - O NI
Line detection Mask generation Entry-wise 088

multiplication [ ]

Physical priors and domain knowledge are keys to formulating self-supervised learning ignoring data
distribution shifts because it learns from the testing data itself.

University of Houston
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Reinforcement Learning Signal Localization

Motivation Using DRRL for Well Logging

‘ SP Resistivity 57
S= —0
g P
. . i [
data collection limited samples estimation errors il e

in Policy lteration

Learning to match patterns of this behavior itself i,

constitutes a reinforcement learning task, wherein we i

anticipate it to achieve:

» 1. Adhering to a conservative policy in an unfamiliar
sample.

« 2. Adopting an optimistic policy in a familiar sample.

™\

23-Apr-24 32
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https://doi.org/10.1190/image2022-3745281.1

Reinforcement Learning Signal Localization

Traditional method-Tedious: Gamma-Ray Signal Localization Task
1. Human vision Well 1 Well 2

. — GR, API GR, API
2. Prior knowledge about rocks e — S 4
3. Rough correlation metrics 0 R £ a0 B 3

RL-Automatic:

1. Machine vision oo (R |
2. Pattern recognition }Z
3. Localization Loss . B

| I
DRRL-Automatic and Robust: 3
1. conservative in unfamiliar samples f

2. optimistic in familiar samples 77 Sandstone

E= ._j Silt- and claystone

i 7| Sandstone

Silt- and claystone

University of Houston
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Reinforcement Learning Signal Localization Scheme

How does the problem look like

RA| [N
-------------- A

41 ground truth
3. [ observation
[
82
@
1.
o 4
0 2000 4000 6000 8000
_g 4 [ target
23
0
T
0 2
£
o 1
4
To
0 2000 4000 6000 8000
Depth

1. Two series, each containing a signal
fragment as a reference/target, separately.

2. Search for target, given reference and new
trace contain the target.

University of Houston

How does the solution process look like

Sequence of attended regions to localize the object States

States

Actions ok eee e ooeo @
J | | |
Steps | | | |
step 1 eoo step i stepi+1 eeoo step n

3. Initial the whole new log trace as the agent's
observation.

4. Let the agent move (left, right, expand, shrink)
to search the reference pattern.

23-Apr-24 34
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Remote Methane Detection Physical Principle

Remote sensing
of emissions

J
|
[

Z
"
|
S Methane ___
k. = Spectrometer
é.,/ Wavelength /_
.4/'.', o
/ v —>
‘?"Y ‘ Optical
i} '3 - Camera
Red (R) RGB Image

Hypercube

» Reflection light carries carbon element’s
signature.

Green (G)

Blue (B)

« The hyperspectral image have more
channels than natural RGB image.

Intensity

Reflectance
e

UV—>NIR % X B G R
Wavelength L Wavelength L
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Industry Remote Methane Monitoring Progress

Satellite Coverage

GHGSat-C2 '*

WorldView 3 %°
PRISMA *
Landsat-8 *
Sentinel-2 #

Targeted

Targeted

Targeted
Global
Global

Constellation = Swath
size [km]

~Revisit time
(per satellite)

Majority satellites have low resolution for point source detection.

Data
availability

5 (C1-C5)° 12
1 13.1
1 3
1 185
2 290

‘GHGSat C3-C5 were launched after the conclusion of testing.
*For best resolution within 20° off nadir. WorldView 3 has 1-day revisit time at lower guaranteed resolution.

14 days
4.5 days®
7 days
16 days
10 days

Commercial
Commercial
Public
Public
Public

A Comparison of Methane Satellites

*7,000m x 5,500m pixels across
2,600km swath

Area mapping
*130m x 400m pixels across
>200km swath

*30m x 30m pixels across
>10km swath

v"  Global and large-scale regions
v' Large point sources

Area sources
Point sources
Sector-wide qualification

v Point sources

‘\V_ﬂn () Ml

« Moderate precision

* Global mapping

* Quantify large-scale regions

* Quantify large-point sources

» Guidance from other satellites tc_)
interpret point-source emissions

o

neSAT P
B

» High precision

» Detect and quantify area sources,
» Sector-wide quantification

» Detect and quantify high-emitting

point sources

» Fills observing and data gaps between

location and global mapping missions

Mapper

GHGS
* Lowprecision = WP

* Detect and quantify moderately
high-emitting point sources

* . Guidance from other satellites to
inform target acquisition

University of Houston

‘)g'kte'lharesAT'
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TROPOMI
GOSAT-GW

MethaneSAT

Lz, o

=

g S
4 TRy

Recently some satellites have had the potential to detect point
sources but they are commercially owned.

The public one has detection capability is yet to be launched.

Area flux

Sentinel5 1@ = mappers

)
o | e

MERLIN

GeoCarb

PRISMA

GHGSat
Point source
imagers

Sentinel-2

\ P 8 %
WorldView-3 -8~ w

Landsat ;Y

Carbon
Mapper

Methane
Observations
from Space




Remote Methane Monitoring Researches

Using drone data for satellite research

Airborne Simulated Simulated
AVIRIS-NG Satellite 30 m  Satellite 60 m

[6]

CH, Plume CH, Plume CH, Plume

University of Houston
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Data Visualization and Analysis

Introduction of the dataset for this study. Matched Filter, e.g. Automated Morphological
(Thompson et al., 2015) Image Analysis?
—I\ . . 4I\ Segmented CH,
Radiance data cube CH, detection map:

—I /1 _imgand _img.hdr source map:
l/ -png

Methane Map

RGB Image Segmentation Result

AVIRIS-NG is an airborne imaging spectrometer that measures radiance in the visible through the (SWIR).
(AVIRIS-NG) = Airborne Visible and Infrared Imaging Spectrometer Next Generation
(SWIR) = Short-wave infrared

AVIRIS-NG dataset is available in https://avirisng.|pl.nasa.qgov/benchmark methane data.html
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Academic Remote Methane Monitoring Research Tasks

Identify the false alarm problem of the traditional method
« Background noise mixed with methane signal.

» Filtering false methane light spots is the major focus of this study.

Methane Estimate for flightline ang20150421t170417

Normalized Histograms with Threshold
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Traditional Method Experiment Result

Visualization of the traditional segmentation result.

LY

Q Ol vhrEsel Problem: False alarm contours

Binary Image Contours

200 200

400 400
600

600

800 800

1000
0 200 400 600 200 1000 0 200 400 600 800 1000
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Plume Segmentation Method Workflow

Segment Anything Model

valid mask

lightweight mask decoder

Segment Any Methane Plumes

Methane Plume Mask

A T
’ N
image [ SAM (Segment Anything Model)
encoder J
|
prompt [ 1
encoder
prompt image **' ‘:’ e
Segment Anything Data
annotate Prompt1: Boun:irnonggf.of Rol Prompt 3: Log augmented methane
| | downsampled methane points e downsampled non-methane points map image
(Region of Interest)
model data \/ /

High Confident HELE o I
= non-Methane
. Methane Points i
frain Points

[ percentile filter

Segment Anything 1B (SA-1B):

* 1+ billion masks
* 11 million images gl N Hyperspectral Image
h. L e\ A Matched Filter Output

* privacy respecting |
* licensed images
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Segment Anything for Methane Plume Result

Visualization of the segmentation results in qualitative and quantitative ways.

Segmented Methane Plume Mask

Red stars: high confident background points
Green stars: high confident methane points
Bounding box: high confident methane region
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Methane Spectrum Examination

Trace examination

200

400

600

800

Extract two spectrum traces, one true methane signal and one false alarm for examination

Red cross: true positive; Yellow cross: false alarm

CH4 Intensity map
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Methane Spectrum Examination

Q CH4 Intensity map

Trace examination

200

400

600

800
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Plume Segmentation Method Workflow

Stacking Operation

1 U O iy el Stacking Operation
Updated Methane Signature

Adapted Methane
Signature
Estimation

[ Update Methan Signature ]

|

\ )

[ SAM (Segment Anything Model) } |

Estimated Methane Trace h Initial Methane Signature

Methane Signal Template

1.0 —— Methane Trace Signal Estimation A
’ \ Matched Filter
0.84
[ Prompts }

0.6
0.4 I
024 percentile filter Logaugmented methane ]

| map image J
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Conclusions

* The proposed sensor placement strategies have enhanced carbon monitoring
performance by 20% and demonstrated the ability to meet performance
standards with fewer sensors.

* Machine learning techniques have effectively remove noise in subsurface
signals, enabling automated processing even when data distribution shifts.

e Advanced machine learning methods applied to remote hyperspectral imaging
data have proven effective in segmenting methane plumes and improving
filtering accuracy, even without customized training data.
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Future Work 1: Remote hydrogen exploration and monitoring

Hyperspectral Trace

Methane Signal Template

1.0 —— Methane Trace Signal Estimation

Matched Filter Segment Anything

Radiance data | H2 detection map > Segmented H2
A m\ source map
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Future Work 2: Hybrid Methane Monitoring System

Hybrid Sensors

Satellite
Neural Network
Al

operator/Optimizer
Drones

survey scheduling checking
Ground
Portable gas
analyzer
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