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Carbon Sequestration

Injecting Scope

After-injecting monitoring

Induced-seismicity alarm

Ref link @https://github.com/yohanesnuwara/carbon-capture-and-storage.
https://gardaerlangga.wordpress.com/2014/07/06/well-logging-definisi-dan-sejarahnya/
https://www.cgg.com/geoscience/subsurface-imaging
https://www.mdpi.com/1424-8220/21/17/5815
https://www.researchgate.net/publication/254528542_Modeling_Leakage_Through_Faults_of_CO2_Stored_in_an_Aquifer/figures?lo=1

Gas Leak from a facility 

example

Gas Leak alarm

Carbon Sequestration and Gas Leak Scenarios
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Ref link @https://www.carboncyclescience.us/news/new-national-academy-sciences-report-anthropogenic-methane-emissions
https://sitn.hms.harvard.edu/flash/2015/natural-gas-leaks-increase-climate-risk-of-energy-source/

Various Sensors of Carbon 

Monitoring

Challenge 1: Design a network to 

cover the monitoring of field scale with 

grid sensor network

needs massive regular point 

sensors which cost budget issue.

Challenge 3: Processing large-scale 

remote data with regular methods that 

need human interaction involved is 

inefficient and hard to scale up to the 

global scale

Challenge 2: Leakage is uncertain in 

terms of large-scale potential leak 

locations and environment conditions

Carbon Monitoring Challenges
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➢ Optimization Classification

Data-driven Optimization Methods

Optimization

Deterministic Optimization Optimization under uncertainty

Stochastic 
Optimization (SO)

Distributionally Robust 
Optimization (DRO)

Robust 
Optimization (RO)
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Data-driven Optimization Methods

Stochastic  
Optimization

• Probability distribution of random parameters is known

• Obj. function : find a decision 𝑥 that minimizes a functional of the 
expected cost.

min
𝑥∈𝜒

𝐸𝑝[ℎ 𝑥, 𝜉 ]

200 300 400 500 600100

PMF

# of detection time

Robust  
Optimization

• Probability distribution of random parameters is unknown, 

but the range is known

• Obj. function : find a decision 𝑥 that minimizes the worst-case cost over 
an uncertainty set

min
𝑥∈𝜒

max
𝜉∈𝒫

ℎ 𝑥, 𝜉
600100

# of detection time
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Data-driven Optimization Methods

Distributionally 
Robust 

Optimization

• Random parameters are uncertain

• Probability distribution of random parameters is uncertain

• Obj. function : find a decision 𝑥 that minimizes the worst-case expected 
cost over an uncertainty set

min
𝑥∈𝜒

max
𝑃∈𝒫

𝐸𝑃[ℎ 𝑥, 𝜉 ]
200 300 400 500 600100

PMF

# of detection time

200 300 400 500 600100

PMF

# of detection time

200 300 400 500 600100

PMF

# of detection time

200 300 400 500 600100

PMF

# of detection time
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➢ Contribution I: Developed a mathematical 
framework for optimizing carbon monitoring
sensor placement with stochastic programming to 
address leak source uncertainty.

➢ Contribution II: Enhanced the sensor placement 
framework using distributionally robust 
optimization to tackle both leak source and 
environmental uncertainties.

➢ Contribution III: Advanced carbon monitoring 
capabilities by integrating machine learning
techniques for improved signal processing and 
data accuracy in variable conditions.

Contributions
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Geophone placement

Induced-seismicity alarm

Ref link @https://www.semanticscholar.org/paper/Wireless-Geophone-Sensing-System-for-Real-Time-Data-Attia-Gaya/03eaf9343fda2feed26f3dc31680ad3c7dd537b7
https://chama.readthedocs.io/en/latest/overview.html
https://www.semanticscholar.org/paper/Wireless-Sensor-Networks-for-Fugitive-Methane-in-Klein-Ramachandran/bd5dc788f349d1dc6a20ffb9984c2419a14d391c/figure/1

Methane sensor placement

Gas Leak alarm

Monitoring Sensor Placement
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min
𝑥∈𝜒

max
𝜉∈𝑈

ℎ 𝑥, 𝜉 (2)

𝑥 -- Decision variables

𝜉 -- Uncertain Parameter

𝜒 -- Convex set of feasible solutions

𝑈 -- Uncertain set

ℎ 𝑥, 𝜉 -- Objective function in 𝑥 that depends on parameters 𝜉

Choose an intermediate approach to obtain a robust form of distributed optimization problem (DRO):

min
𝑥∈𝜒

𝐸𝑃[ℎ 𝑥, 𝜉 ] min
𝑥∈𝜒

max
𝑃∈𝒫

𝐸𝑃[ℎ 𝑥, 𝜉 ]

𝒫 is an uncertain set of probability distributions constructed from the samples.

Robust Optimization 

(RO)

Stochastic 

Optimization (SO)

Distributionally 

Robust 

Optimization (DRO)

Benefits:
Be able to solve optimization problem with uncertainty

Data Driven Optimizations
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Motivation

Ambiguity sets based on probability distance:

By selecting a suitable metric, certain infinite-dimensional convex DRO problems can be

transformed into finite-dimensional convex optimization problems

𝒫 = {𝑃: 𝑑(෢𝑃𝑁, 𝑃) ≤ 𝜀}

෢𝑃𝑁 -- Empirical probability

𝜀 -- Radius

𝑑(෢𝑃𝑁, 𝑃) -- Metric of the similarity of two distributions

Is there a metric that is simple to calculate and

suitable for discrete / continuous distributions?
Wasserstein

distance

Discrepancy

• In many situations, we have an empirical estimate of the underlying probability distributions.

• A natural way to hedge against the distributional ambiguity is to consider a neighborhood of the 

empirical probability distribution 

Discrepancy-based DRO
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Wasserstein distance

𝑑𝑊 𝑃1, 𝑃2 = 𝑖𝑛𝑓
𝛾~∏(𝑃1,𝑃2)

𝔼(𝑥,𝑦)~𝛾 [ 𝑥 − 𝑦 ]

∏(𝑃1, 𝑃2): the set of all possible joint distributions of 𝑃1 and 𝑃2.

(𝑥, 𝑦)~𝛾: samples under joint distribution 𝛾

𝑥 − 𝑦 : sample distance

𝔼(𝑥,𝑦)~𝛾[ 𝑥 − 𝑦 ]: expectation of distance for sample 𝑥 and 𝑦 under joint  distribution 𝛾

used to measure the distance between two distributions.

Definition:

Wasserstein distance of 𝑷𝟏 and 𝑷𝟐: the lower bound of this expectation.

Discrepancy-based DRO
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Wasserstein distance

Move mass 𝑃1 into the shape and position of 𝑃2. 

Bulldozing cost : amount of moving soil multiplied by the distance the soil moves. 

Wasserstein distance: the smallest bulldozing cost from 𝑃1 to 𝑃2.

𝑷𝟏

𝑷𝟐

∏(𝑃1, 𝑃2): transportation plan

𝑥 − 𝑦 : distance the soil moves

𝑌(𝑥, 𝑦): amount of moving soil from 𝑥 to 𝑦

𝔼(𝑥,𝑦)~𝛾[ 𝑥 − 𝑦 ]: bulldozing cost 

Discrepancy-based DRO
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Wasserstein distance

𝔹𝜀
෢𝑃𝑁 = {𝑄: 𝑑𝑊 (෢𝑃𝑁, 𝑄) ≤ 𝜀}

Wasserstein distance-based ambiguity set:

• The ambiguity set 𝑄 can be viewed as a Wasserstein ball which contains all probability

distributions whose Wasserstein distance to the empirical distribution ෢𝑃𝑁 is less than 𝜀.

• 𝑄 will cover the true distribution with a higher probability with a larger value of 𝜀.

• There exists a trade-off between the accuracy and the complexity

• It is important to well design the value of 𝜀

Discrepancy-based DRO
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Wasserstein distance
How to calculate 𝜀 of ambiguity set

Light-tailed distribution assumption: Distribution is call light-tailed if there exists an exponent

𝑎 > 1 such that

The assumption guarantees that the ambiguity set can cover most of the possible distributions.

Number of samples

Discrepancy-based DRO

Radius selection: With this assumption, suppose that ෢PN is the empirical distribution, for 𝑚 ≠ 2

and 𝑐1, 𝑐2 > 0, under a confidence level of 1 − 𝛽, we have
Radius selectionNumber of samples Confidence level
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Robust Optimization
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Sensor Placement under uncertainty example

Scenario: 1 leak source, 2 sensor candidates

Sensor Placement under Uncertainty Example

Historical detection time data for sensor A/B

Faster is better

Detection time/s
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Distributionally Robust 
Optimization

Sensor A Sensor B

Uncertainty level = 2 (Confidence level = 0.9 )

A B

With DRO method we can chose the right sensor while 

other robust optimization method cannot in this scenario.

Sensor Placement under Uncertainty Example
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Objective: Detection time Expectation

Binary Decision Variable

Cost Constrain

Supplementary constraints for 

decision variable define

Problem Formulation 1: Optimal Detection Time
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Objective: Localization Accuracy Expectation

Localization Inversion Problem

Forward

Cost constrain and
decision variable define

Problem Formulation 2: Optimal Sources Localization
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Detection time optimization workflow Localization accuracy optimization workflow

Passive-seismic Sensor Placement Optimization Workflow
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Results

1. Achieve 20% higher performance with same budget.

2. Achieving same performance level with less sensors.

Passive-seismic Sensor Placement Optimization Results

Same Budget Placement strategies

for detection time and localizations

When budget increase, both
methods performance converge

Same performance, SO method
use less sensor budget
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Minmax obj

cost

Earliest detection 

Exist

Earliest detection

Sole

Binary

Uncertainty set

Earliest detection 

Range

Inner Max 

obj

Uncertainty set

Uncertainty Level 

Estimation

Main Problem Formulation

Inner Problem Formulation

Table of Symbols

Problem Formulation 3: Optimal Worst Detection Time
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Sensor 

Placement 

Optimization

Wind 
Speed

Uncertainty Estimation

Wind 
direction

Potential leak positions 

(wells, pipelines and 

plants)

Leakage 
ratesHistorical 

data

Physical based

Methane Dispersion 

Simulation

Worst-case 

Scenarios under 

uncertainty

Numerical

Simulation

Software

Sensor 
locations

Distributionally

Robust

Theory

Using the distributionally robust 

expectation of worst detection 

time under uncertainty for sensor 

placement optimization.

Methane DRO Worst Detection Time Optimization Workflow

One leak scenario example:

Red star: leak source

Plume: methane propagation after 24 hours
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Wind Speed

Simulation cube
• Simulate 74 leakage events as observed events

optimization database

• Test baseline wind speed average method, Stochastic

optimization and DRO results on unseen dataset

contains 148 leak events.

Methane DRO Worst Detection Time Optimization Simulation under Wind 
Perturbation
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Carbon Sequestration
Injecting Scope

Ref link @https://github.com/yohanesnuwara/carbon-capture-and-storage.
https://gardaerlangga.wordpress.com/2014/07/06/well-logging-definisi-dan-sejarahnya/
https://www.cgg.com/geoscience/subsurface-imaging
https://www.mdpi.com/1424-8220/21/17/5815
https://www.researchgate.net/publication/254528542_Modeling_Leakage_Through_Faults_of_CO2_Stored_in_an_Aquifer/figures?lo=1

Pre-injecting survey
Imaging

Pre-injecting survey
Well-logging

Carbon Sequestration and Monitoring involved 
Cost-intensive Subsurface Surveys

Carbon sequestration requires subsurface surveys (imaging, well-logging) to design injection plans and monitor injection safety.
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Agent Environment

Get Reward 𝑅, new state 𝑠′

From state 𝑠, take action 𝑎

Supervised Learning Self-supervised Learning Reinforcement Learning

Benefits:

1. Be able to processing large scale data automatically

2. Be able to learn complex high dimensional pattern

Challenge:

Generalization: the practice data distribution is different from the training dataset

Machine Learning Methods: Lower the Energy Transition Friction
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Blind Trace Signal 

Autoencoder can only learn 

reconstruct signal remove noise.

Challenge: The seismic data acquired from the field has noise such as swell 

and monochromatic noise and the traditional denoising method has limitations 

which also would attenuate the signal when performing denoising

Subsurface Imaging-Denoising
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Physical priors and domain knowledge are keys to formulating self-supervised learning ignoring data

distribution shifts because it learns from the testing data itself.

[1]

[1] Zi, Yuan, Shirui Wang, Pengyu Yuan, Xuqing Wu, Jiefu Chen, and Zhu Han. "Self-supervised learning for seismic swell noise removal." In Second International Meeting for Applied Geoscience & Energy, pp. 1910-1914. Society of Exploration 
Geophysicists and American Association of Petroleum Geologists, 2022.

Self-Supervised Learning Results
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[4] Zi, Yuan, Fan, Lei, Wu, Xuqing, Chen, Jiefu, Wang, Shirui, and Zhu Han. "Active gamma-ray well logging pattern localization with reinforcement learning." Paper presented at the SEG/AAPG International Meeting for Applied Geoscience & 
Energy, Houston, Texas, USA, August 2022. doi: https://doi.org/10.1190/image2022-3745281.1
[5] Y. Zi, L. Fan, X. Wu, J. Chen, S. Wang and Z. Han, "Active Gamma-Ray Log Pattern Localization With Distributionally Robust Reinforcement Learning," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-11, 2023, Art no. 
5911011, doi: 10.1109/TGRS.2023.3278491.

Reinforcement Learning Signal Localization

Motivation Using DRRL for Well Logging

data collection

Learning to match patterns of this behavior itself 

constitutes a reinforcement learning task, wherein we 

anticipate it to achieve:

• 1. Adhering to a conservative policy in an unfamiliar 

sample.

• 2. Adopting an optimistic policy in a familiar sample.

estimation errors 

in Policy Iteration
limited samples

https://doi.org/10.1190/image2022-3745281.1
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[4] Zi, Yuan, Fan, Lei, Wu, Xuqing, Chen, Jiefu, Wang, Shirui, and Zhu Han. "Active gamma-ray well logging pattern localization with reinforcement learning." Paper presented at the SEG/AAPG International Meeting for Applied Geoscience & 
Energy, Houston, Texas, USA, August 2022. doi: https://doi.org/10.1190/image2022-3745281.1
[5] Y. Zi, L. Fan, X. Wu, J. Chen, S. Wang and Z. Han, "Active Gamma-Ray Log Pattern Localization With Distributionally Robust Reinforcement Learning," in IEEE Transactions on Geoscience and Remote Sensing, vol. 61, pp. 1-11, 2023, Art no. 
5911011, doi: 10.1109/TGRS.2023.3278491.

Reinforcement Learning Signal Localization

Gamma-Ray Signal Localization Task

Well 1 Well 2

Traditional method-Tedious:

1. Human vision

2. Prior knowledge about rocks

3. Rough correlation metrics

RL-Automatic:

1. Machine vision

2. Pattern recognition

3. Localization Loss

DRRL-Automatic and Robust:

1. conservative in unfamiliar samples

2. optimistic in familiar samples

https://doi.org/10.1190/image2022-3745281.1
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Reinforcement Learning Signal Localization Scheme

1. Two series, each containing a signal 

fragment as a reference/target, separately.

2. Search for target, given reference and new 

trace contain the target.

3. Initial the whole new log trace as the agent's 

observation.

4. Let the agent move (left, right, expand, shrink) 

to search the reference pattern.

How does the problem look like How does the solution process look like
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• Reflection light carries carbon element’s 

signature.

• The hyperspectral image have more 

channels than natural RGB image.

Remote Methane Detection Physical Principle
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• Majority satellites have low resolution for point source detection.

• Recently some satellites have had the potential to detect point 

sources but they are commercially owned.

• The public one has detection capability is yet to be launched.

Industry Remote Methane Monitoring Progress
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Segmentation of Leakage Plume Task

[6] Kumar, Satish, et al. "Deep remote sensing methods for methane detection in overhead hyperspectral imagery." Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2020.
[7] Jongaramrungruang, Siraput, et al. "MethaNet–An AI-driven approach to quantifying methane point-source emission from high-resolution 2-D plume imagery." Remote Sensing of Environment 269 (2022): 112809.

Remote Methane Monitoring Researches

Using drone data for satellite research

[7][6]
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AVIRIS-NG is an airborne imaging spectrometer that measures radiance in the visible through the (SWIR).

(AVIRIS-NG) = Airborne Visible and Infrared Imaging Spectrometer Next Generation

(SWIR) = Short-wave infrared

AVIRIS-NG dataset is available in https://avirisng.jpl.nasa.gov/benchmark_methane_data.html

Data Visualization and Analysis

RGB Image Methane Map Segmentation Result

Introduction of the dataset for this study.

https://avirisng.jpl.nasa.gov/benchmark_methane_data.html
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• Background noise mixed with methane signal.

• Filtering false methane light spots is the major focus of this study.

Academic Remote Methane Monitoring Research Tasks

Methane Map Distributions of 

Methane signal and 
Background Noise

Baseline result

Strong False Alarm

Identify the false alarm problem of the traditional method
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Optimal Threshold

Traditional Method Experiment Result

Visualization of the traditional segmentation result.

Problem: False alarm contours
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Plume Segmentation Method Workflow

Segment Anything Model

Segment Anything Data

Segment Any Methane Plumes

[8] Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao et al. "Segment anything." In Proceedings of the IEEE/CVF 
International Conference on Computer Vision, pp. 4015-4026. 2023.
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Segment Anything for Methane Plume Result

Segmented Methane Plume Mask Compare to the Label

Visualization of the segmentation results in qualitative and quantitative ways.

Red stars: high confident background points

Green stars: high confident methane points

Bounding box: high confident methane region
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Trace examination

Methane Spectrum Examination

Extract two spectrum traces, one true methane signal and one false alarm for examination

Red cross: true positive; Yellow cross: false alarm

CH4 Intensity map RGB image
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Trace examination

Methane Spectrum Examination

CH4 Intensity map
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Plume Segmentation Method Workflow

Stacking Operation

Stacking Operation

Estimated Methane Trace



Conclusions
• The proposed sensor placement strategies have enhanced carbon monitoring 

performance by 20% and demonstrated the ability to meet performance
standards with fewer sensors.

• Machine learning techniques have effectively remove noise in subsurface 
signals, enabling automated processing even when data distribution shifts.

• Advanced machine learning methods applied to remote hyperspectral imaging 
data have proven effective in segmenting methane plumes and improving 
filtering accuracy, even without customized training data.
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Future Work 1: Remote hydrogen exploration and monitoring

Hyperspectral Trace

Emission Intensity Spectral Trace

Radiance data

Matched Filter

H2 detection map

Segment Anything

Segmented H2

source map

[9] ZHANG, J., Dezhi, X.I.A.O., Shidong, F.A.N.G., Xingsheng, S.H.U., Xiao, Z.U.O., Cheng, C., Yuedong, M.E.N.G. and Shouguo, W.A.N.G., 2015. Characteristics of 
low power CH4/air atmospheric pressure plasma jet. Plasma Science and Technology, 17(3), p.202.
[10] https://webbtelescope.org/contents/media/images/01F8GF9E8WXYS168WRPPK9YHEY

[9]

[10]
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Future Work 2: Hybrid Methane Monitoring System

Hybrid Sensors

Satellite

Drones

Ground 

Portable gas 
analyzer

Human in loop 
checking

Physical 
simulation

Neural Network 
AI 

operator/Optimizer

Pointer 
data

Drones Data Satellite data

Optimal sensor placement/ 
survey scheduling
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