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Characteristics of Semantic Communications

The semantic extraction process can filter out irrelevant image details for different tasks before
transmission by performing the appropriate image processing techniques, thereby relieving the
network burden without compromising the system’s performance.
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 Shannon-Weaver three-level communications

»Level A: Transmission of symbols (technical problem)
»Level B: Semantic exchange of source information (sematic problem)

»Level C: Effects of semantic information exchange (effectiveness problem)

« Semantic system architecture
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« Conventional communications
» Atube for accurate transmission of symbols.
» Regardless of content in source.
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« Semantic communications
» Transmitted symbols convey the desired meaning.
» Transmitting semantic features relevant to task only.
» Significantly improved transmission efficiency.
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® |nitial semantic communication works
» Logic probability based semantic communication [1,2]
» Word-level based semantic communication [3]
» Cannot fully understand the meaning behind texts

® Derive semantic capacity of a discrete memoryless channel [2]:

Cs= sup {I(X;Y)—HWI|X) + Hy(Y)}
P(X|W)

> 1(X;Y) is the mutual information

> Hs(Y) is the average logical information of received messages, representing the
ability to interpret received messages

» P(X|W) is the conditional probabilistic distribution of a semantic coding strategy

University of Houston 10 12/5/2024
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Advantages of DL

> Learn the latent semantic information representation.

» Extract the semantic features of source data.

» Achieve the end-to-end transmission optimization to recover semantic information.

» Al (e.g. deep learning) excels at handling large, complex, and unstructured data such as images, audio, and text.
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In 2014, Goodfellow

In 1950, the Turing W35 .. In 2007, the first novel
proposed GAN.

Test was proposed. created by Al was

published.
In 2017, Google
Landmark Go gle proposed Transformer.
In 1967, the human-
computer dialogue . Int2012£ t(?e_fuII?;
developed. ' proposed ChatGPT3.5.

OpenAl

Substantial applications emerged, but
were limited by computational power GAl is thriving!
and algorithms.

Limited by technological

Characteristic capabilities, GAI developed slowly.

Initial stage Slow development stage Fast development stage
(1950s — 1990s) (1990s — 2010s) (2010s — now)
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« Advantages of AIGC
O Automation and Cost-Saving: Saves time and resources and eliminates manual effort.
O Creativity and Innovation: Pushes the boundaries of traditional human creativity.

O Customization and Personalization: Be tailored to specific preferences or individual user data.
O Multimodal and Multicultural: Adapts to multimodal inputs and diverse cultural contexts.

Al-generated Images

Al-generated Videos Al-generated 3D Content
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® Deep joint source and channel coding (JSCC) [1]

» Recovers the text directly without performing channel and source
decoding separately.
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® Reinforcement learning-powered semantic communication [1]

» Maximize the semantic similarity.
» Use reinforcement learning to train the network.

____________________________________________________________________

[}
1| Source Channel 1 | ) Channel Source .
" : Encoder Encoder | e " Channel ' Db =y Decoder > Decoder .' m
N e e e e i L ']
TX part F, H RX part F,,

® Sentence semantic transmission with HARQ [2]

» Combine semantic coding with Reed Solomon coding and HARQ, called SC-RS-HARQ, to improve the reliability of
text semantic transmission.

» Propose a similarity detection network to detect meaning error.

® Semantic representation learning based E2E architecture [3]
» Capture the effects of semantic distortion.
» Obtain performance gain for different languages.
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® Transmission-recognition communication system [1]

» Jointly designed communication system and image
classification network.

» Achieves higher image classification accuracy than performing

them separately.

®DeepSC-S and DeepSC-ST [2,3]
» Joint semantic-channel coding for speech transmission.
» Speech-to-text and speech synthesis.

® MU-DeepSC [4]
» Multi-user semantic communications.
> Multimodal data transmission.
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» Only consider one-to-one communication with various modalities such as image, text, and audio [1-6].
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» The fixed output length of the encoder, regardless of the traffic condition, can be a waste of
bandwidth resources if the traffic is in low demand.

University of Houston 18 12/5/2024



Department of Electrical
% and Computer Engineering Current Work & Chanllenges

Cullen College of Engineering

» The training efficiency and catastrophic forgetting property of the Deep Learning network to
serve multiple user-equipped different networks.

DenseNet s
segmentation
0.9

| - classification  detection ... classification
o (_’.__N———w‘ T 7 | B
7 A~

0.7 1 i // >~ /\/%x
0.6 — -z 7//__:/ ~
0.5 - — // / = 8x
04 - W
03 A — Task 1 Y-/ L A
L ///// & 4%

0.2 - —— Task 2 Wz [
o1 L | | | 1 | | Wi s

’ oo 0w e o Swin-Transformer

Training Epoch [11]
» The absence of a centralized dataset for training semantic models.

» Vision Transformer (VIT) achieves higher performance compared to CNN network. However,
VIT has quadratic computation complexity to input image size[1].

University of Houston 19 12/5/2024



Department of Electrical : : : . . :
% andpcOmputer Engineering Research Application | —— Motivation & Contributions
Cullen College of Engineering

Swin Transformer-Based Dynamic Semantic Communication
for Multi-User With Different Computing Capacity

O We employ variants of the Swin Transformer model to simulate the difference in computing capacity.

O Swin Transformer employ the self-attention computation to non-overlapping local windows and shifted window
mechanism. It achieves linear computation complexity.

O We propose a dynamic compression module, increasing the length of the message when the network demand is

low, and reducing in high demands.

To solve the problem of multiple users with different computing capacities in Semantic Communication
(SemCom):

a) We propose a novel system model for BS Encoder to embed the signal accordingly to the receiver.
b) We design a new loss that consider the human visual quality instead of MSE error alone.

c) Depending on the network traffic, our model can adaptively change the compression rate of the signal.

University of Houston 20 12/5/2024
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O Current works[1-3] only consider one transmitter and one receiver in their proposed scenarios.
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O We consider the downlink transmission from the Base Station (BS) to multiple users in SemCom.
O The proposed scenario is difficult due to the need to serve multiple users with different computing
capacities.
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The input image is denoted as I, while E, denote the source encoder of BS with the parameter set a.

sy = FE,(I), g sre = Eo(I|cy),

We change the equation from a normal semantic encoder into a conditional semantic encoder, which embeds the
receiver’s index in the encoding process.

Similarly with the Channel Encoder:

X7 = Cp(sr) € R”, » X1k = Cg(s1.k|9K),

The received signal at the user k, under the Additive White Gaussian Noise (AWGN) is denoted as:
X1 =Yir = Xrx + Ni,

The signal can be transformed back to a similar form as:

Xip=HIE)THEYDE = X1 + Ny,

University of Houston 22 12/5/2024
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Research Application | Proposed Solution
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The channel encoder is responsible for the compressed semantic features from the source encoder
while considering both the noise value and the network condition.

> Itis composed of K noise fusion modules and one compression rate (CR) module.

» The noise fusion module associates each semantic feature with a weight and computes the dot product
between them and output from weighted noise values.

» Using the SNR information, we can derive a set of potential noise values.
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We propose a hybrid loss, which combines different loss functions:
LHyb _ - LMS-SSIM (1—7) Lho €.££27

*  Multi-scale structural similarity index measure (MS-SSIM).

*  Mean absolute error (MAE).

Mean Square Error (MSE).

* y and € are coefficients of the losses to prevent any loss from dominating the objective.

With this objective, our system is able to reconstruct images with improved perceptual details compared to those
obtained using the MSE loss.

(2pa iy + ¢1)(0ay + ¢2)
(12 + p2 +c1)(0% + 02 + )’

M
[MSSSIM _ 1 _ H SSIM;; (z,y),
j=1

SSIM(z,y) =
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Research Application I——EXxperiment Result
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and Hybrid losses rienced physic channel conditions.

case.

TABLE VII

PERFORMANCE CHANGE WITH DIFFERENT CR UNDER VARIOUS CHANNEL CONDITIONS

LCD HCD

SNR Metric CR 3/64 4/64 5/64 3/64 4/64 5/64

0 dB PSNR 26.6496 + 0.0027 | 27.3811 + 0.0044 | 27.8956 + 0.0003 | 27.8727 + 0.0025 | 28.6462 + 0.0022 | 29.1580 + 0.0040
MS-SSIM 0.8890 £ 0.0001 0.9096 + 0.0001 0.9223 0.9149 & 0.0001 0.9318 0.9416

2 dB PSNR 27.7758 £ 0.0042 | 28.3966 £+ 0.0050 | 28.8191 £ 0.0014 | 29.0682 £ 0.0006 | 29.6853 £ 0.0026 | 30.0902 £ 0.0025
MS-SSIM 0.9215 £ 0.0001 0.9348 £ 0.0001 0.9431 + 0.0001 0.9411 =+ 0.0001 0.9509 0.9567

4 dB PSNR 28.7059 £ 0.0028 | 29.2291 £+ 0.0042 | 29.5654 £ 0.0015 | 30.0122 £+ 0.0011 | 30.5120 £ 0.0030 | 30.8431 £ 0.0019
MS-SSIM 0.9416 £ 0.0001 0.9506 £ 0.0001 0.9560 0.9559 0.9624 0.9662

6 dB PSNR 29.4620 4 0.0014 | 29.8815 £ 0.0027 | 30.1331 4+ 0.0009 | 30.7586 4+ 0.0010 | 31.1535 £ 0.0024 | 31.4172 &+ 0.0018
MS-SSIM 0.9551 0.9609 0.9645 0.9656 0.9699 0.9724

8 dB PSNR 30.0010 + 0.0066 | 30.3356 £+ 0.0092 | 30.5237 + 0.0060 | 31.3133 £+ 0.0030 | 31.6197 + 0.0041 | 31.8254 & 0.0018
MS-SSIM 0.9634 0.9673 0.9697 0.9717 0.9746 0.9764
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An Efficient Federated Learning Framework for Training
Semantic Communication Systems

O Limited works considered the data scattering problem for training semantic communication models, only [1] consider
audio modality.

O Here, we not only provide an efficient FL algorithm to address the decentralized data issue but also reduce
communication costs and achieve better performance.

To solve the data-driven problem of DL model in the SemCom system and the
scattering property of data :

a) We leverage the Federated Learning (FL) algorithm to train the DL models in SemCom.

b) We propose a new approach for aggregating the global model, which is called FedLol, considering the image

reconstruction task.

c) Improve the communication efficiency for FL by transmitting the model partially.

University of Houston 28 12/5/2024
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O Process of Federated Learning for SemCom:

Step 1: Initializes learning models (EllsJ ; Eg; DS ; Dg) at the BS and distributes them to all users.

Step 2: The user trains the model with its private data and sends back the updated models.

Step 3: The BS aggregates the global model based on the received model and continues Steps 2 & 3 until certain

conditions are met.

1 Proposal Description:

» Considering the image reconstruction task and its properties, we propose Federated Local Loss (FedLol), which
determines each local model’s contribution to the aggregation process based on its local loss.

» We transmitted the source encoder/decoder every global round, while the channel encoder/decoder is only
updated after P global rounds. (P=5)
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I denotes the image, I denotes reconstructed image:
I = DS(Fy), I € R>HW,

To make it simple, we use the most common loss for the task,
which is MSE:

L(I,I) =MSE(I, I).

The global model is aggregated as follows:

K
P = Zwkfbk,
k=1

The value wy is calculated based on the loss of user k:

1 25:1(1%) — Lg
(K —1) Zf:I(Lk)

University of Houston 30
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Algorithm 1 Training Semantic Communication in an Effi-
cient FLL Framework: FedLol

l:

Initialize: Global model @, number of global rounds
T', local epochs R, update interval for channel en-
coder/decoder P.

2: for one global round t=1,2,.... 7T do

3:

N AR L

10:
11:
12:
13:

14:
15:

Check the current global round: if t % P == 1, send
the whole model else send the semantic encoder and
decoder model only.
for each client k= 1,2, 3..., K in parallel do
Synchronize local model with the received model.
while client epoch » < R do
Train the model with local data.
) — &, ' —nVL;.
end while
if t % P == 0 send the whole local model & L;..
else send semantic encoder/decoder models & L;..
end for
Calculate wy, Yk € [1, K] as Eq. 10 and aggregating
the global model with the calculated weights.
end for
Output: Global Model ®.
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Research Application I I——Experiment Result

29.0 0.96
—e— FedLol —e— FedLol
261 28.51 —* FedAvg 0.941 7 FedAvg
—a— FedProx-u:0.01 ’ —=— FedProx-p:0,01
1 28.0{ —*— FedProx-p:0.1 &~ FedProx-p:0.1
24 MOON-p:0.1 0.921 MOON-p:0.1
27.51
= i
< 22 = & 090
o . Z 27.0 o
Centralized o = 0.881
20 —+— FedAvg-Full update-3 local epochs 26.51
—e— FedLol-Full update-3 local epochs 0.86
181 FedAvg-Full update-1 local epoch 26.01
—e— FedAvg-Partial update-3 local epochs 0.84 1
—¥— FedLol-Partial update-3 local epochs 25.51
16 —a— FedAvg-Partial update-1 local epoch 0.82 11— ] ] } ; ; ; ; ;
. : : : T 25.0— T T T " T " T T 1 2 3 4 5 6 7 8 9
20l 40 60 80 100 1 2 3 4 5 6 7 8 9

SNR value [dB]

Communication Rounds SNR value [dB]

Fig. 2: The PSNR values of the proposed algorithm compared to Fig. 3: The PSNR values of the proposed algorithm compared to Fig. 4. The MS-SSIM values of the proposed algorithm compared to other
other benchmarks, a = 1. other benchmarks, o = 1. benchmarks, o = 1.

TABLE I
THE PSNR AND MS-SSIM RESULTS ACROSS DIVERSE NON-ITD SCENARIOS

SNR =1 dB FedLol MOON FedProx FedAvg FedAvg (ADJSCC)
«v value PSNR | MS-SSIM PSNR | MS-SSIM | PSNR MS-SSIM PSNR MS-SSIM PSNR | MS-SSIM
a =0.1 26.388 0.870 25911 0.853 25.978 0.855 25.849 0.852 24.534 0.819
a=1 26.215 0.866 25.822 0.853 25.815 0.850 25.707 0.846 24.332 0.809
a =10 26.289 0.868 25.541 0.840 25.545 0.839 25.495 0.841 24.301 0.809
a = 10000 (IID) | 26.217 0.865 25.614 0.842 25.562 0.840 25.574 0.841 24.358 0.809
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(c) The reconstructed image by FedLol 23.078; 0.868
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Outline

® Overview: Semantic Communications and GAl

® Research Applications

» Swin-Transformer-Based Dynamic Semantic Communication for Multi-User With Different
Computing Capacity
» An Efficient Federated Learning Framework for Training Semantic Communication Systems.

» Al-Generated Content for SCM (AIGC-SCM)
® Demo of Generative Al Enabled Semantic Communication

® Conclusion and Future Direction
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Effectiveness leve Semantic EXtraction
) - Goal of S B o
’ 7 ommunicatiol e
! | \

Goal of SemCom

\\‘

Destination

Source Destination

ffectiveness Level

Background Shared Background N\ KB Feedback KB
) ek Prompt Extractor L
Semantic level knowledge knowledge 9 —based on AIGC or Optimization Reconstructor
Q S emantic ‘\ ‘/
dy representation

--based on AIGC

other AI models

(former semantic

Semantic Channel

_________________________________________

S emantic noise

S emantic opduct
interpretation ination
S emantic O s emantic Prompt Encoder
******* . (former semantic
channel decoding encoder)
4 Physical 2 Channel .
channel decoding Channel Denoiser
Encoder Modulator i --based on
l AIGC '

Technical level Physical noise
The framework of conventional SCM. The framework of AIGC-SCM.

« Compared to DL-SCM, AIGC-SCM offers advantages in

O Easier Deployment: It doesn't require joint codec training, making it less costly and easier to deploy than
DL-SCM.

0 Broader Applicability: Unlike DL-SCM, which demands differentiable loss functions, AIGC-SCM
supports a wider range of loss function types.

O High-fidelity Reconstruction: Harnessing the generation capability of GAI, AIGC-SCM can reconstruct
high-fidelity and semantically consistent content even when the transmitted data is highly compressed.

University of Houston 34 12/5/2024
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AIGC-enabled Extractor Outputs |
= )
Text Summarization Information 1
Encod Decod Encoder-Decode == Filter '
For prompt extractor: The goal e e A - —_ |
. st VLC d Image Caption Jointiv-trained
of the prompt extractor is to distill ::> el ey Anoldman o
. . — = Presentation or —* ISCroSsINg  Compression |
-aligne Partly-fr P

semantic prompt from the source VL Crosssligned [ B Perty-fioma the road. ,
! . |
d ata. | Learned Knowledge Graph Generation '
I T Giath : e Node — Hoce GRU Relation :

 Textto-Graph o ey of 1604 0. the Queries Language = Language — -
e z00e 15 i PDT and its Encode Decod Presentation |
: elevanon nHJ'OiZ)‘".r \:.\ Jevel JENE i) \I Edge Head - |

AIGC-based Denoiser

Gaussian Diffusion Model

For denoiser: Some AIGC s B
models, such as diffusion models, :> e : R ey
demonstrate notable capabilities in - T

Gamma

1c1 Noise Y A\ _ : i . , A
denoising. e e e e e e e 4
I Inputs AIGC-assisted Reconstructor Outputs |
[ 5
P VY N e EB W
. - Tt cartoon cat. or 7L Cross-ali Presentati or — Enrichment
For reconstructor: It aims to : N V=i Y - ston R ifica .,
R . [ ceeevmmrerenssomresensmarenneverseserressnnssessansorseeneseere- N Nl e eereeevenvennnsnersnssensasemasavansssersasesvavannnnessase
enhance the receiver’s quality of | Scene Generation - B I
1 1 1 i Sogtenmtion i St — Vol-based Static Scene Diffusion-based — W ey '
eXpe r I e n Ce by g e n e ra.tl n g h I g h - |:> : -to-Video _ Cache _, cxche B g:::;ﬁ::; ermation Seens Gunaceiing ‘ Enhancement :
- - - - - Update Noise Image —» & i
d I menSIOnaI Semantlc Informatlon : ................................................................ S signal_'l;ased A ‘\eural e I |

Encoder

1 1 -to- > ; — User Prompr —» S (otks kA o I

based on low-dimensional iv.suﬁsc’ﬁmcm [H,,H., | ¢ e @ =* mmﬁn“ |
|

|

Feare B8 pecoder |—+ ControlNet

p rO m pts . | \Exlmclor Skeleton /
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Multi-user VR/AR Games

* AIGC-SCM can represent
virtual scenes within the
prompt and generate diverse
and personalized content for
different users.

Remote Monitoring

* In typical remote monitoring
scenarios, AIGC can be
applied to video prediction,
thereby reducing energy
consumption.

University of Houston

Research Application 111 Applications

Multi-user VR/AR Games Vehicular Networking
User 1 User 2 Vehicle 1 Vehicle 2
g &- - “Children crossing
the road!”
.55 A4 @ Predicted time: 55 |1
; Low- Multi-
Privacy- Personalized
removed l Scene I ﬁ di}r:ensronl ! Gigodalm
Prompt Generation ompt neration
AIGC-SCM
Sampled Sufl-).?equem 5 Unified Dlﬁerenn’qble
Prompt e Prompt Generation
Generation
- EEE oy
g B o mi-wx
) o () (@), 2
A A¥M
o —= MR S o
Surveillance Control Room Cloud Service Cross-field Users

Remote Monitoring Personalized Services

36

Vehicular Networking

» AIGC can be applied in prompt
extraction and selection before
transmission.

e At the receiver end, the
reconstruction of road scenes is
also possible in AIGC-SCM.

Personalized Services

* AIGC-SCM enables a single
transmission to cater to
multiple users with
personalized needs, thereby
significantly enhancing
efficiency.
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KB at Transmitter ‘ S— KB at Receiver
eFeedback and optimization
l I —— Guidance l I
Extract Prompt by AIGC 0 Noise Estimation bDeX;,geC Q Reconstruct by AIGC
9@ ' — . -
Step 1: .9 _’<_ ‘_' T T Q Semantic Noise S z, T Parameters
KB retrieval Und g S N Estimation d{ep ; fram (It Ie Step 1: Loss -
andtask CEsioction [Understanding | Sommnary | Recogatticn Effect ! Solution HpSicne Train a basic ~ Fenetion =
| analysis_ Seamenaion|_ Predicion | Tanslaton Sysis £ o x m otz AIGCmode o i
@ Uni-modality Extraction: @ Cross-modality Extraction: Es f E e e Be- « B e,
3 < -
Step 2: o 0 . £ IR A e : L ®
Trail; s ? u — —— C:ssrsr;?lnt g - Step 2: Sample from ) Step 2. . s - .
5 - N & Semantic Noise | = Semantic Noise the trained model Fine-tune each = = —f— ) G
extraction Slow. : o0 's AIGC —_—
del g e T B e with the condition user's + ¢ O
WS i% — | Physical Noise Condmon Random Signals model (A
R =1 - 2’ Estimation _\Hﬁf e e
"""""" i Effect | ) .
Ste-p 3: Prompt 1 ® Concate- & “ | 4 Solutlon Step 3: » = Output 1
Builda  ppopp 2 ) nation  ®Prompt £ i 11 Sample from the o
- r o Selecti .,‘; : = romp
se-lectlon/ Prompt3 @ ‘Eusion Qzee;;;(;lls Answers £ | B3 .AIGC mOd?l — —> Output 2
Sfusion model P— — :;, ) lefUSlon Model with the received
j &= Denoised
ysical Noise } ysica se ST ¢ s e
Physical Noi | Physical Noi Sionals promp ______ — l
S":"’“/] ' > Semantic Channel > ~ Demodulating, ~ \ t ' \
E%, Semsntic Noisews Received | Channel/ | [Received M&> Decoded ;% ‘ Destination
&, Signal Source Prompts |DPecoding| Prompts Reconstruction I Ay
. daauianng > Physical Channel )\ Decoding . ’”
Transmitter Physical Noise<l Receiver

The detailed presentation of AIGC-SCM, and some important procedures for implementing AIGC-SCM.
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« Motivations

0 Real-time remote monitoring challenges semantic compression for long-term data adopted in DL-based SemCom.
O Remote monitoring mainly considers changes in the target object and ignores dynamic background elements.

O DL-based visual SemCom transmission is difficult to recover pixel-level images due to the existence of error floor.

« A change-driven modular SCM framework with semantic sampling based on Diffusion model

Semantic DDPG-assisted Semantic
Encoder Decoder
Image/Video

& Target ' Image/Video Declfi/lm%relssmn ®

¥ = Segmentation | S Compression KU odule

i Module % L Module KT g X
® | Sematic S M S A _
J iSampling w TRy O ! j Sematic|Map

4= R | — - 1zl ¢ " |

Real-time = v . | |8 B S  staticScene Image Display
monitoring scene l i § 8 & Information

Concatenation

: AN |
Control ! 4

— ™ Information Cache
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« Target Segmentation Module

Input Backbone Segmentation Head Downscaling
Block MobileNetv3 Lite R-ASPP Medzs
Resolution 1x1 Conv y
/4 18 116 1/16 BN lxl(fom' " Output:
Input: ReLU 5 C:)lnll)ll)lressed Target
128 segmeman O1) .
Real-word Scene Avg-Pool Segmentation
Y Conv ’ m 128 ~ Channel
i N Adaptive |
L ico
« Vol-based Sampling Module e m e E e e e e e m e — - ————————
Age of information: , ’ Y i \
Yt : g2 o> |
Semantic change degree: I 8;K’BJ A :
|
change _ Mt + Ny, — 2Ny, : 12 82 KB |
t — n, +ng, ’ : Datasize (H.264) :
h |
wherey, - e°€ (0,1). ! !
. |
Value of Information: '\ I

_ Aol change
Ve =T1Y: T2V
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- DDPM-based scene construction |
Input of the DDPM-based scene construction: ®Refer§nce|mage S X2 =y e \ Encoder
- Reference Image (Receiver's local information). A4 Difusr Oifion |
g Resblock Resblock
- I i i @ Noisy Image
Semantic Map (Information sent by transmitter). Noisy Imag -

® Step Information

Diffusion
Encoder —_—
Resblock

Input Conv
DownSample

DownSample
. DownSample

N

Embedding

— ‘

®
Diffusion Diffusion Diffusion
Decoder — Decoder = Decoder
Resblock Resblock Resblock }
JJ S ; R Y R / = ecoder

Output:
Estimated Nojse

X0 - X1 > X9 —> e e e

- - - — - - - S <+ - ——— =]

Diffusion
Decoder
Resblock

UpSample

;
< B

il

= B Diffusi
EP
T A
28 |
Q

=)

@ Semantic Map

Gradually add noise and then reverse.

Real-world scene
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« Visual simulation results under different weather

Reference Semantic map Generated scene  Real scene Semantic map Generated scene  Real scene
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® Overview: Semantic Communications and GAl

® Research Applications

® Demo of Generative Al Enabled Semantic Communication

® Conclusion and Future Direction
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Research Challenges

» Knowledge base
— General multi-scale knowledge base

— Knowledge base update and synchronization

* Semantic-channel coding

— Semantic representation

— General transceiver structure

— Performance metrics: subjective + objective

* Semantic information transmission
» Semantic-aware network

University of Houston

Future Work
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AIGC-SCM assisted by knowledge bases in remote monitoring scenario

 Motivations

In certain scenarios, we may desire that the information reconstructed by AIGC-SCM at the receiving end closely
resembles the original object as much as possible. For instance, in the Internet of Vehicles, it's preferred that the
images of traffic violations captured by monitoring systems depict the actual offending vehicle, rather than a
generated image of a different vehicle. In such cases, we can utilize a prior knowledge base to achieve this.
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AIGC-SCM for collaborative perception and traffic prediction

« Motivations
L When a driver is approaching an intersection, receiving a forecast of the imminent road conditions becomes a piece of
semantic information of paramount importance.

O The literature on collaborative perception currently considers overly simplistic channels. In reality, the channels in
vehicle-to-vehicle (V2V) communication are quite complex. Signals in the V2X communication process are easily

distorted by obstacles and interference.
 The data used in the V2X network is unreadable and complex. But we need to send human-friendly alerts to the drivers.

12/5/2024
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Other modality data: wireless sensing

« For the virtual interactive game in Metaverse, GAI can generate avatars and create the corresponding scenarios
according to users’ requirements, thereby constructing a complete virtual world for users to explore.

« Typically, we use cameras, such as Kinect, to capture the user’s image, which is then combined with the user’s

requirements and fed into the AIGC model to generate digital content. Nevertheless, prolonged use of the camera may
raise privacy concerns even though SemCom is considered.
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Generative Al enabled Semantic Communication

Limited by Channel Capacity

Al technique (e.g. autoencoder) does not consider channel
Transmit info to prevent GAI hallucination at the receiver
Subjective QoS and hard to theoretical analysis

Many Implementation issues

Application | :

v" Multi-user Scenario with Varying Computing Capacities
v' Targeted Embedding Vector & Hybrid Loss
v" Dynamic Channel Encoder & Loss Functions

Application 11 :

v' Federated Learning for Semantic Communication
v" Reduced Communication Overhead:

Application 111 :

v' AIGC-SCM Architecture ! » U A ol
. : =S NEEHE - C=HARtm) !
v Application to Multi-Modal Systems N eI i35
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