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Motivation 

Why hydrogen?

75% of all is 
made up of 
hydrogen

Fossil fuel
hydrogen

Black
hydrogen

Blue
hydrogen

Grey
hydrogen

Renewable
hydrogen

Green
hydrogen

What is Hydrogen
• Hydrogen’s energy density is significantly 

higher than fossil fuels
• Hydrogen is an energy carrier and can be 

used as energy storage
• Hydrogen doesn’t exist in nature by itself

Green hydrogen
• Green hydrogen is produced by electrolyzors 

using renewable energy
• Electrolysis is a process to split water into 

hydrogen and oxygen by a direct current
• Around 8GW of eletrolyzor capacity is installed 



Electrolyzor 

What is electrolyzor?

 Use electricity to split water into 
hydrogen and oxygen 
Can provide demand-side flexibility by
 Adjusting hydrogen production to follow 

wind and solar generation profiles
 Can provide grid balancing service

 There is a trade-off between 
efficiency, cost and carbon emission

 Great performance
 High purity H2 straight from the stack
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Energy Flow of Hydrogen System 

Production Transformation Transportation End Use

Renewable power

Electricity

Electrolysis

Truck

Pipeline

Storage

Industry

Vehicle

Heating

Power 
generation

5



Quantum Tools 

• Coordinated system is usually MILP or MINLP

• Both MILP and MINLP is NP-Hard, can't be 

solved in polynomial time 

• We need new tools to solve complex problems

Divide the mixed-integer convex problem into two parts

 Pure integer part: solved by the quantum computer. 

 Polynomial solvable continuous part: convex 
optimization algorithms.
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Gated Quantum Circuit

Typically, a quantum circuit always looks like

• QML performs better than the classical NN under the 
same level of number of parameters

• The available qubits of Quantum computer are limited
• Quantum computing is unstable, easy to lose 

information while measurement
7

1 qubit gates

2 qubit gates

Initial state is 
all qubits

MeasurementConsist of 1 and 2 qubit gates



Quantum Annealing

• Limited qubits
• Fit most problems that can be solved by classical 

machine learning
• Challenge: Commonly can NOT beat the classical 

computer because of limited qubits and noise

• More qubits
• Fit a small part of problems like QUBO
• Faster than classical solver
• Challenge: Need additional algorithms to 

transform problem for quantum annealer
8

Quantum Circuit Quantum Annealing



Quantum Hamiltonian
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• We work with only the problem Hamiltonian:

• Goal (what the hardware does)
–Minimize σi ∈ {-1, +1} subject to provided Ji,j  ∈ Rand hi ∈ R coefficients
– In other words, a quantum optimization program is merely a list of Ji,j  and hi
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Power-to-Hydrogen Pipeline System

Objective:

s.t.

Power balance

Voltage balance

Pipeline transportation

Zone level hydrogen balance

Storage

Minimize total cost
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Quantum Assisted Hydrogen System
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In this model, we utilize trucks to transport hydrogen 
between zones

Power can be generated by electricity or fossil fuels
Hydrogen can be stored in the truck while transportation
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Objective Functions

Detailed Formulation

The objective function: minimize the total 
cost of coordinated system.

Hydrogen generation cost

Hydrogen transportation cost

Cost of electricity production
Need new ways to solve it!

Transportation cost has quadratic 
binary terms, difficult to solve
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Hydrogen System Constraints

Balance of hydrogen storage

Hydrogen generation limit.

Binary variables also exist 
in constraints, making it 

more difficult



Quantum Assisted Algorithms

Classical Linearization

A binary quadratic term can be linearized:

 Though the quadratic term can be 
linearized, we have to introduce 𝑛𝑛2 extra 
binary variables and 4𝑛𝑛 constraints

How about 10,000 
variables or more?

 The complexity of classical 
solver to solve such a problem 
grows exponentially 
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Quantum Annealing and QUBO

Quantum Annealing

QUBO fits our problem well though need transformation

 Do not need extra variables for quadratic terms

 Need transform the problem into QUBO format

16



Benders’ Decomposition

Classical Benders’ decomposition 

17

Master Problem

SUB

Feasibility Cuts 
or

Optimality Cuts

Binary 
solution 𝐱𝐱

But still one problem!
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Benders’ Decomposition

Quantum Machine still has limitation

Classical 
GPU/CPU Solver

Continuous Binary

Quantum 
Solver
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Combinatorial Bender’s Decomposition

Original problem Master problem (MAP) 

Subproblem (SUB) 

 In Combinatorial Benders’ 

Decomposition (CBD), we can 

split the binary variables into 

two sets, and assign them to 

MAP and SUBs freely.

 MAP is a pure binary 
problem

 The cuts are different 
from classical BD

Master problem

Dual problem

Benders’
DecompositionCuts Solution
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Combinatorial Benders’ decomposition

Master problem Subproblem

Feasibility Cuts /
Optimality Cuts

solution 𝐱𝐱

Optimality Cuts：

Feasibility Cuts：1) Divide the original problem (OP) into master problem 

(MAP) and subproblem (SP).

2) Solve the MAP and obtain solution �𝒙𝒙. if �𝒙𝒙 leads to an 

infeasible SP. Add the corresponding feasibility cuts to 

MAP and return to MAP. (Feasibility Cuts).

3) If SP feasible , with optimal objective value ℎ𝑇𝑇𝑦𝑦𝑣𝑣. In that 

case an optimality cut is generate (Optimality Cuts)
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QUBO Transformation

Reformulate the continuous variable: 

Constraint (19b) is transformed as: 

Constraint (19c) is transformed as: 

Cuts (19d) and (19e) is transformed as

Reformulate the Final master problem (FMP)
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Experiment Results

 Classical vs. Quantum

• Classical solver
 Time consuming grows exponentially for 

each iteration
 Quicker than quantum when the 

problem size is small

• Quantum annealer solver
 Time consuming grows asymptotic 

linearly
 Quicker than classical when the 

problem size is large
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Distributed Deep Learning

24

Advantage:
– QML performs better than the 

classical NN under the same 
level of number of parameters

Disadvantage:
– The available qubits of 

Quantum computer are limited
– Quantum computing is 

unstable, easy to lose 
information during 
measurement



Quantum Knowledge Distillation

Student Teacher

Softmax with 
temperature 
(soft 
predictions)

𝑝𝑝 =
[0.25, 0.85 …  0.14]

𝑞𝑞 = 
[0.35, 0.92 …  0.1]

Hard 
predictions

𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠 =  [0,1,0 … , 0]

Distillation 
Loss

CrossEntropy(𝑝𝑝, 𝑞𝑞)

Student Loss CrossEntropy(𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠,𝑦𝑦true)

Final Loss 𝛼𝛼 ⋅  Student Loss + 
(1 − 𝛼𝛼) ⋅ Distillation Loss

25



Quantum Knowledge Distillation

Our approach can not only enhance the performance of inherently resource-

constrained QNN but also increase the stability of the training process.
26
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Motivation of Work III 

• Classical algorithms can only ensure local convergence for 

nonconvex problems

• The power balance equivalent function also increase 

difficulty to solve 

Current Electrolyzor Design 
• Joint Planning of Power-to-hydrogen 

Find the minimum cost and satisfy demand by produce 
hydrogen by electricity via electrolyzor

• Dynamic efficiency of electrolyzor [2]

The efficiency of electrolyzor is affected by temperature and 
current density, with a nonlinear & nonconvex function

[2] Benjamin Flamm, Christian Peter, Felix N. Büchi, John Lygeros, Electrolyzer modeling and real-time control for optimized production of hydrogen gas, Applied Energy, Volume 281, 2021, 116031, ISSN 0306-2619.

Problems
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QHD Assisted Hydrogen System

Detailed Formulation
maximize the total surplus

Production of electrolyzor

Balance of hydrogen storage

Power limit

Power transformation

Storage limit
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Quantum Hamiltonian Descent-based OPTimizer (QHDOPT)

 QHDOPT is an open-source optimization solver that implements QHD to solve 

continuous NLP problems with box-constraints [3][4][5]

 Utilize QHDOPT to solve continuous problem

  

QHDOPT

Classical

[3] J. Leng, J. Li, Y. Peng, and X. Wu, “Expanding Hardware-Efficiently manipulable Hilbert space via Hamiltonian embedding,” Jan. 2024.[Online]. 
[4] J. Leng, Y. Zheng, Z. Jia, L. Fan, C. Zhao, Y. Peng, and X. Wu, “Quantum Hamiltonian descent for non-smooth optimization,” Mar.2025. [Online].
[5] S. Kushnir, J. Leng, Y. Peng, L. Fan, and X. Wu, “QHDOPT: Asoftware for nonlinear optimization with quantum Hamiltonian descent,” INFORMS Journal on Computing, vol. 37, no. 1, pp. 107–124, Nov.2024.
 



31

Quantum Hamiltonian Descent-based OPTimizer (QHDOPT)

  
• QHDOPT is designed to handle optimization 

problems of the form:

• With box constraints:

Univariate terms Bivariate terms

• QHDOPT allows these constraints to be incorporated via penalty 

methods, making it flexible for a wide range of applications

Quantum 
Annealing only 

for BINARY 
problems
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Spatial Discretization

Encode the objective function into the Hamiltonian

Time-dependent scaling factors

Laplacian operator

QHDOPT applies spatial discretization to represent 
the continuous wavefunction over a finite grid:

I : 𝑁𝑁-dimensional identity operator
L, D: 𝑁𝑁-dimensional matrices

Now we can use 
quantum annealer



QUBO Transformation

Transform constraints to penalty terms in objective function

Too complex, penalty 
decides EVERYTHING

33



Case Study

34

Optimal Objective Value Computation Time

Case Decision 
Variables

Constr
aints

Pure-IPOPT 
(\$)

QHD+IP
OPT (\$) QHD (\$)

IPOPT 1k
Samples 

(\$)
IPOPT 1k 
time (ms)

QHD+IP
OPT (ms)

1 9 6 -4.63 345.64 107.68 345.64 263,93 45.032
2 12 8 -5.33 465.37 139 465.37 283,22 47.324
3 15 10 -5.53 587.76 156.62 587.76 308,92 44.406
4 18 12 -6.87 609.46 185.33 713.31 323,82 48.596

 Table shows that the IPOPT can not find optimal value efficiently

QHD can find a better value but need to adjust penalty
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Nonlinear Programming

General format of NLP:

min 𝑓𝑓(𝑥𝑥)
s. 𝑡𝑡.𝑔𝑔 𝑥𝑥 = 0

ℎ 𝑥𝑥 ≤ 0

• Large Scale NLP

The objective function and constraints can be nonlinear and 

nonconvex, and the problem is usually large scale.

• Quantum Computing in NLP

We propose a hybrid quantum Hamiltonian decent based 

Augmented Lagrangian Method for constrained optimization

Equivalent Constraints

Inequivalent Constraints

Objective Function
Classical Computing

Quantum Computing
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Augmented Lagrangian Methods 

Most quantum and quantum inspired algorithms are designed to solve unconstrainted or 
box-constrainted problems

min 𝑓𝑓(𝑥𝑥)
s. 𝑡𝑡.𝑔𝑔 𝑥𝑥 = 0

ℎ 𝑥𝑥 ≤ 0

min 𝑓𝑓(𝑥𝑥)
s. 𝑡𝑡.𝑔𝑔 𝑥𝑥 = 0

ℎ 𝑥𝑥 + 𝑠𝑠𝑗𝑗 = 0

Add slack variables 

Augmented Lagrangian Functions 

Lagrangian multipliers

Penalty terms

Update multipliers
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Simulated Bifurcation

  
Ising Model:

Quantum mechanical Hamiltonian

creation and 
annihilation operator

amplitudeKerr coefficient detuning

Each operator a is approximated by a complex amplitude

Update x and y by:

Quantum 
inspired 

algorithm
Or
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QHD-ALM
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QHD-ALM

  

Subject to:

ALM
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Case Study

• QHD-ALM achieves better 
solution when facing 
nonconvex problems than 
classical solver 

• IPOPT 1k achieves best 
solution but cost much time

• Single IPOPT  can not find the 
optimal solution
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Future Work - I

1. Investigate a more complex 

electrolyzor model.

2. Investigate a large-scale 

power-to-hydrogen

3. Add the temperature 

variation into the modeling
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Future Work - II

1. Develop different descent methods for Ising model. 2. Expand ALM-QHD to broader form of NLP

High-order formulations
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Conclusion

• We developed a mixed-binary nonlinear programming (MBNLP) model for a hydrogen 

system integrated with a truck transportation network.

• To solve the MBNLP, we designed a Quantum Assisted Combinatorial Benders’ 

Algorithm, using a quantum annealer for the binary master problem.

• Our latest advancement enhanced the electrolyzor model and employed QHDOPT to 

efficiently solve the resulting nonlinear problem using Quantum Hamiltonian Descent.
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Electrical & Computer Engineering

Q & A

Thank you
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