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75% of all is
made up of
hydrogen

What is Hydrogen

* Hydrogen’s energy density is significantly
higher than fossil fuels

* Hydrogen is an energy carrier and can be
used as energy storage

* Hydrogen doesn’t exist in nature by itself
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Black Blue
hydrogen hydrogen

Renewable Green
hydrogen hydrogen

Green hydrogen

Fossil fuel
hydrogen

* Green hydrogen is produced by electrolyzors
using renewable energy

* Electrolysisis a process to split water into
hydrogen and oxygen by a direct current

 Around 8GW of eletrolyzor capacity is installed
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What is electrolyzor?

» Use electricity to split water into
hydrogen and oxygen
Can provide demand-side flexibility by

v Adjusting hydrogen production to follow
wind and solar generation profiles

v Can provide grid balancing service
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Energy Flow of Hydrogen System
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Travelling Salesman Problem Rsdiictan Embedding _ D-Wave Quantum Annealer

Protein Folding Fujitsu Digital Annealer

Knapsack Problem Gate-based QC

Workshop Scheduling QC simulators

min xTAx+x"B+C
rE[—-1+1}Y

Coordinated system is usually MILP or MINLP Divide the mixed-integer convex problem into two parts
Both MILP and MINLP is NP-Hard, can't be O Pure integer part: solved by the quantum computer.
solved in polynomial time O Polynomial solvable continuous part: convex

optimization algorithms.
We need new tools to solve complex problems P g



% Gated Quantum Circuit
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Typically, a quantum circuit always looks like

0
o) — B - hol
0 1/

i I Bav
LA B B3
o Z -t B3

Initial state is  Consist of 1 and 2 qubit gates Measurement
all qubits

QML performs better than the classical NN under the
same level of number of parameters
W * The available qubits of Quantum computer are limited
OJ  Quantum computing is unstable, easy to lose
information while measurement
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Quantum Annealing

* Limited qubits  More qubits
- Fit most problems that can be solved by classical ~ * Fita small part of problems like QUBO
machine learning - Faster than classical solver

« Challenge: Commonly can NOT beat the classical  * Challenge: Need additional algorithms to
computer because of limited qubits and noise transform problem for quantum annealer
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% Quantum Hamiltonian

* We work with only the problem Hamiltonian: —ach @ 10

A. .S o (3
H.!'Se'ng = [2 ]I (Z ﬂ'i) 1

i

p -

il a
Initial Hamiltonian Final Hamiltonian

* Goal (what the hardware does)
—Minimize o; € {-1,+1} subject to provided J;; € Rand h; € Rcoefficients o, oo
—In other words, a quantum optimization program is merely a list of J; ; and h; s
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E:IIE Power-to-Hydrogen Pipeline System
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¢ «prd .. .
Objective: ©s = 2 D b+ > CP by Minimize total cost
LeT, beEBy oot teT, ieHR

Y fome— D Fibt = LbeBroo Do+ D Pt — Y it —phy DEBVEET,,

(bl (mb)eL icW iCHE, Power balance
Z fb,nt Z fg?b,t = ]‘bCBroot ' qut + Z qr}t” — Z qH’L qf?t? Vb E Bgv-t E 7;3

(byn)cL (m,b)cL icwb 1€HE
Umt — Unt = 2 ('rm,n . fnjz,n,t + T - fg?n!t) , V(m,n) € LVt € T,

S.t. Voltage balance

P M+f ot <82, Y(m,n) € LVEE T,

ip d ip ch ip tail head Pipeline transportation
REPIC _pPipeh = N gppteil N gpiphe P P

ili=(m,z)cP ili=(z,n)cP

S ohig4 Y mieplP - YT gty > gt = D, Zone level hydrogen balance
iIEHR i€HE: ili=(z,n)eP i|i=(m,2)EP

pip plp pip head pip tail
ey =eld +ab —q% Storage
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1@ Electricity Load
% T
Electrolyzer | Zone 1 g—.- Zone 2
Hydrogen Tanks Hydrogen Load
Steam Methane in Zones T Load
Reformer \ . !
- - . Q.
Zone3 | Zone 4 |
Electricity Flow Hydrogen Flow

Electrolyzer

dIn this model, we utilize trucks to transport hydrogen Supply Side Toad | Comsumer Side
between zones
EI Power can be generated by eleCtriC|ty or fOSSIl fuels Steam Methane Reformer

JHydrogen can be stored in the truck while transportation
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Objective Functions

Detailed Formulation

min ¢, = CP?Prd 4 O 4 ocle,

The objective function: minimize the total
cost of coordinated system.

d
E E (:Er Dt

teT ieHR
Hydrogen generation cost

C;}lc Z Z )\tp‘root .

tET bEBroot

h2prd __
C =

Cost of electricity production
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Hydrogen transportation cost

Transportation cost has quadratic

binary terms, difficult to solve

Need new ways to solve it!
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0<h;y<H; VYieHR,teT,

0< ¢ <C; 7. VieTK Nz € Z,teT,

Oﬁni-pugﬁi Vie HE.t € T. >z =
) o unlding
Hydrogen generation limit. 0<¢ ., =< Ci-Tiz VieTCVze€ Z,teT,
t
0< €z,0+2( Z hir + Z Thi 'PfTE - Z qlding‘i,z,‘r-l_ E Li,z,t = 1 Vi € T}C t € T
7=1 \ieHR: 1EHE 2 1€ETK 2€EZ

> g — D';i’;’-) <E..Vze Zte T\{|T|} E 7. <SNTK, ; ,Nz€ Z,t €T,
i€ETK

) iE€TK
e ( S ohiet Y omi-plE =) ¢+

TET \i€HR. i€EHE - ieTK

Z ngffing _ DQY;E) =€,,|7], V2 € Z. . . .

ieTK Binary variables also exist

in constraints, making it
more difficult

:nfrl _ mh-; + Z lding Z unlding Vi€ T]C t e T

zzt 1,zt
zEZ 2€EZ

Balance of hydrogen storage

(J<pm’”<c NVie TK,teT.
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E:IIE Quantum Assisted Algorithms

Classical Linearization

Cost = Z Z Qi;Tix;

1=1 j=

>

A binary quadratic term can be linearized:

non
Cost = E E Qijzij
i=1 j=1

L, >

N
IV IATA
3

Though the quadratic term can be
linearized, we have to introduce n® extra
binary variables and 4n constraints

How about 10,000 alot

variables or more?

The complexity of classical
solver to solve such a problem
grows exponentially —

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING

epariment of Electrical & Computer Engineering

exponential
growth
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E:IIE Quantum Annealing and QUBO

Quantum Annealing

QObJ Z CU'LQ@ zwz + Z Z Qz Jil?zCU]

. arg  min  folx)
T 1< e
=R
m

QUBO Formulation QUBO Graph Minor Graph Embedding

QUBO fits our problem well though need transformation

(a)
r Readout of the 30|Ul|0ﬂ1 ' QA
» Do not need extra variables for quadratic terms ..
Fin
» Need transform the problem into QUBO format

(e) (d)
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Classical Benders’ decomposition

min, g c’'z+6 Master Problem
Master Problem

s.t. 0 > (W(i))T(b — Ax), i€l

I .
o 0> (u'(b— Az), jeJ,
re XCZ", 6cR.
Feasibility Cuts
ory Binary
threshold or Optimality Cuts solutionX
max_itr? !
min, f'y
st. By>b— Az, SUB
an optimality or >
feasibility cut y > 0.

Benders’ Decomposition .
i But still one problem! .
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Quantum Machine still has limitation

10000

1000

number of qubits

rigetti

10

1
2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

For current stage, can we ask classical

) Classical Quantum
computer to give quantum a hand? GPU/CPU Solver Solver
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Master problem (MAP)

Original problem

> In Combinatorial Benders’

[P]: min ¢"x +d"y [MP]: min ¢’ x + 0(x) 5 OB
st. Ax + Ey > b, st.x; € (0.1). ecomposition ( ), we can
x; € {0, 1}, split the binary variables into
v €10,1} Vj € B, 0 two sets, and assign them to

y; integer Vj € G,

y; >0 VjieC MAP and SUBs freely.
J — *

Subproblem (SUB)

v' MAP is a pure binary

Master problem roblem
[SP]: (x) = mind’y P

t.Ey>b— AXx, :
Benders’ SRRy = _x v' The cuts are different
Cuts Decomposition Solution yj € {05 1} VJ' € Bs from classical BD
y; integer Vj € G, ]

Dual problem yj =0 vVjedC, 1
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% Combinatorial Benders’ decomposition

Master problem solution X ‘ Subproblem
g © ISPL6G) =mindy
[IMP]: minc" x +60(x) -« — st Ey > b — A¥,
Feasibility Cuts / v, €{0.1} V¥jeB,
s.L.x; € {0’ 1}' Optlmallty Cuts yjinteger Vj e G,

;>0  Vjec,

1) Divide the original problem (OP) into master problem
(MAP) and subproblem (SP). > a4 (1—a) > 1,
2) Solve the MAP and obtain solution Xx. if X leads to an ' ‘
infeasible SP. Add the corresponding feasibility cuts to Optimality Cuts:

MAP and return to MAP. (Feasibility Cuts).
M"Y Z x; + M"Y Z (1 —a;)+ 60> hTy”,

i:w? =0 it =1

3) If SP feasible, with optimal objective value hTy”. In that

case an optimality cut is generate (Optimality Cuts)

20
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Reformulate the Final master problem (FMP)

Constraint (19b) is transformed as:

FMP: min x U 'x+c¢'x+6 (192) H, — P1(Z Tins — 2VieTK.teT.
X - 1,2
sty @iy =LVieTKteT, (19b) 2€2
zEZ
Y Ty SNTK.  Vze ZteT, (19¢) Constraint (19¢) is transformed as:
1ETK
LT =0 z:wizl ieTK
vo e VP, (19d)
Soa+ Y (l-z) =21, YeeVR (19) Cuts (19d) and (19e) is transformed as
i:a:fi’:(] i:a:le
xrex,xe{0,1}". (191) H; :Pg{]\fU Z x; + M"° Z (1 - 33'1) +6 — dTyv - Sz,t}z
=0 ] =1

Reformulate the continuous variable:

4—P4{Z T; + Z (1—2)+6-1-s2,}%

?. frs =
9 — E 2 ?13+n E 2 TLJ+(1+H+?3|) 337 Z.’E =1

?,——’rl
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E:[IE Experiment Results
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» Classical vs. Quantum

Classical solver

v Time consuming grows exponentially for
each iteration

v Quicker than quantum when the
problem size is small

Quantum annealer solver

v Time consuming grows asymptotic
linearly

v" Quicker than classical when the
problem size is large
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Distributed Deep Learning

Server

~----------, Advantage:

:_____. . . . . . . — QML performs better than the
%" training - classical NN under the same

- |evel of number of parameters
Logits J Update datasets

2NN 7 |
cesoo0 |
i

7] N
L o) = '
) ——{x—{7] -

|
i o [z} Fh}
1) L2l 1M

Disadvantage:

— The available qubits of
Quantum computer are limited

L

2

‘ l ‘ — Quantum computing is

unstable, easy to lose
mE @8 EE ivormatondurin

measurement

Client 1 Client 2 Client 3
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Quantum Knowledge Distillation

T — 0 Less Attention on very negative logits

Student Loss

L(y,9) = — Y yilog(di),

1

LEP =72 Z K L(p'y, ps)-

T

L=all+(1- (.r)L‘gKD

Predicted

Distillation
Predicted

Class 1 0.70
Class 2 0.22
Class 3 0.08
Class 1 0.80
Class 2 0.11
Class 3 0.09

Vi = 1(z; = max z;)

I T -0

o Zi/T)

Vi = @&

2

l T -+

Vi =

Softmax with

temperature
(soft
predictions)

Hard
predictions

Distillation
Loss

Student Loss

Final Loss

Student Teacher
p = q =
[0.25,0.85 ... 0.14] [0.35,0.92

Pstuw = [0,1,0 ..., 0]

CrossEntropy(p, q)

CrossEntropy (pstu, Yirue)

a - Student Loss +
(1 — a) - Distillation Loss
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.. 0.1]
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Quantum Knowledge Distillation
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1.0 MNIST 10k 10- Fashion-MNIST 10k i MNIST 60k
’ - Without Teacher ' . —e——o— ]
0.9 091 —o— With Teacher 0.9
0.8
2 > 0.8 ., 0.8
g s 8
307 507 507
< 3 3
0.6 0.6 <06
0-51 - Without Teacher 051 0.57 o Without Teacher
-o- With Teacher o With Teacher
0.4 : , . 04 . . : |
1 5 10 15 20 1 5 10 15 20 04 5 10 15 20
Epoch Epoch Epoch
MNIST 10k Fashion-MNIST 10k MNIST 60k
1.75 - Without Teacher Loss 2,00 —» Without Teacher Los:  2-00 -e- Without Teacher Loss
-o- Student Loss 1.751 -o- Student Loss 1.75 —- SFuc!ent_ Loss
1.50 —- Distillation Loss —- Distillation Loss e Distillation Loss
1.50 { 1.50
1.25
1.251 ° 1.25
9 1.00 a
2 3 1.00 31.00
075 -
) 0.751 0.75
0.50 0.501 0.50
0.25 0.251 0.25
0.00 0.00 0.00
1 5 10 15 20 1 5 10 15 1 5 10 15 20
Epoch Epoch Epoch

Our approach can not only enhance the performance of inherently resource-

constrained QNN but also increase the stability of the training process.
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Current Electrolyzor Design

* Joint Planning of Power-to-hydrogen

Find the minimum cost and satisfy demand by produce

Efficiency [Y]

hydrogen by electricity via electrolyzor

 Dynamic efficiency of electrolyzor [2]
The efficiency of electrolyzor is affected by temperature and e DAl

0 1 1 L L i 1 1 i
0 0.5 1 1.5 2 25 3 35 4 45 5

current density, with a nonlinear & nonconvex function

NP-hard

Problems
e (Classical algorithms can only ensure local convergence for

P =NP
= NP-complete

nonconvex problems

Complexity

* The power balance equivalent function also increase

P = NP

difficulty to solve
ISSN 0306-2619. 28

[2] Benjamin Flamm, Christian Peter, Felix N. Bichi, John Lygeros, Electrolyzer modeling and real-time control for optimized production of hydrogen gas, Applied Energy, Volume 281, 2021, 116031,
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TLIZIE QHD Assisted Hydrogen System

B3+B4-T+B5-T2]

7y = B1 +Ba-exp [
Icenn

Detailed Formulation

N—1
hyo kSTl | oy imize the total surplus
max C°(ey —¢g) = 3 CP™ P, B Voot Vi + [+ ) + 72T+ -l - i
=0
t, t
s - log Kt1+—2+—3) Meen + 1] :

A AR ey au uE S el Power transformation T T?
R AR oy )l Balance of hydrogen storage
k]

EMN < o < pmax Storage limit

0 {_: pgl E In(l,ma.x?

Efficiency (N} vs. Powerat T=75"C

= gificiency

/ E—— e

&

EMiciency ()

[=]
b

Power limit

o
——

(o}

grid
P > 01
0 2 4 10 12 14

E] Eé"l:?'-'\lﬂer|I-c%|"‘|-'!l
] pt |
{’3: =&f,-m-n€£ ﬂ;‘ :_}[] /
- Net <ay + ag - PO™ 4 a3 - exp ("*4 - (100 - PEI/PC"“M)) ;

Production of electrolyzor Bs + B4T + B51? _
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» QHDOPT is an open-source optimization solver that implements QHD to solve

continuous NLP problems with box-constraints [3][4][9] Classical

» Utilize QHDOPT to solve continuous problem

J.4 Domain Applications B et
Engi ing, M t, 5
ngineering anagemen Sympy / Qp Prograrnmlng

Economics, Finance

4 N\
Box-Constrained
Quantum Algorithm r Nonlinear Optimization
: ; QHDOPT min £ (x)
Quantum Hamiltonian Tnterface xeQ
Descent (QHD) \ y l o
uantum Software 4 i . Y 4
QHDOPT | Post-Processor |H(t) —— H() — H(D)| 1
1 SEmquCompiler t\ \
s ~\ i !
Quantum Hardware < ;)l;tlrflal > RN S
D-Wave, lonQ, olution Hgey(t)
Classical Simulator (QuTiP) ; - QH DOPT
[3] J. Leng, J. Li, Y. Peng, and X. Wu, “Expanding Hardware-Efficiently manipulable Hilbert space via Hamiltonian embedding,” Jan. 2024.[Online]. 30

[4] J. Leng, Y. Zheng, Z. Jia, L. Fan, C. Zhao, Y. Peng, and X. Wu, “Quantum Hamiltonian descent for non-smooth optimization,” Mar.2025. [Online].
[5] S. Kushnir, J. Leng, Y. Peng, L. Fan, and X. Wu, “QHDOPT: Asoftware for nonlinear optimization with quantum Hamiltonian descent,” INFORMS Journal on Computing, vol. 37, no. 1, pp. 107—-124, Nov.2024.
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* With boxconstraints: [, <z, <U;,, Vi=1,...,n

* QHDOPT is designed to handle optimization
problems of the form:

Quantum
Annealing only

T m

jf;‘ﬁ‘i f(x) = Zﬂi(-’f?:’) + Ziﬂj [ij}'}‘j(ﬂ?fj) for

i—1 =1
/ \ problems

Univariate terms Bivariate terms

* QHDOPT allows these constraints to be incorporated via penalty

methods, making it flexible for a wide range of applications
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E:IIE Spatial Discretization

Encode the objective function into the Hamiltonian

Li=) I®--®L®D(g)®...I,

Laplacian operator n = m
Fg=Y I®--@D(p)®Yy I®---0D(q)®... 1
H(t) =|e" (—%ﬁ HeXtf (), = =t
\ / | : N-dimensional identity operator
Time-dependent scaling factors L, D: N-dimensional matrices

QHDOPT applies spatial discretization to represent l’
the continuous wavefunction over a finite grid: E(s) = Z Jijsisj + Z his,
1< i

Now we can use

N 1
H(t) = e* (—ELd) +eXFy

quantum annealer
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E:IIE QUBO Transformation

Dynamic Efficiency
Model

Constraint
Reformulation

Box Constrained
Model

Post-processing

Quantum
Annealer

| Raw
Q matrix Solution

QHDOPT
Solver

llnitial Point

IPOPT Solver

¥

Final Solution

Py = ((B1 + By - exp (£ BI}‘T'B"’W))/ETCCH — et — S2) "

Too complex, penalty
decides EVERYTHING

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Transform constraints to penalty terms in objective function

Py = (a; +as - pomax 4 . - exp (a4 - (100 - p;"/PC’m“)) — el — 31)2,

2
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Case Study

Optimal Objective Value

Computation Time

Case

Decision Constr Pure-IPOPT QHD+IP

QHD (\$)

IPOPT 1k
Samples IPOPT 1k QHD+IP

Variables aints (\$) OPT (\$) (\$) time (ms) OPT (ms)
1 9 6 -4.63 345.64 107.68 345.64 263,93 45.032
2 12 8 -5.33 465.37 139 465.37 283,22 47.324
3 15 10 -5.53 587.76 156.62 587.76 308,92 44.406
4 18 12 -6.87 609.46 185.33 713.31 323,82 48.596

» Table shows that the IPOPT can not find optimal value efficiently

» QHD can find a better value but need to adjust penalty
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E:[IE Nonlinear Programming

General format of NLP;

min

S. L.

gx) =0

— Equivalent Constraints

h(x) <0

« Large Scale NLP

The objective function and constraints can be nonlinear and

nonconvex, and the problem is usually large scale.

* Quantum Computing in NLP

We propose a hybrid quantum Hamiltonian decent based

Augmented Lagrangian Method for constrained optimization

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Classical Computing

Quantum Computing
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E% Augmented Lagrangian Methods

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

Most quantum and quantum inspired algorithms are designed to solve unconstrainted or

box-constrainted problems

min f(x)
s.t.g(x) =0
h(x)+s; =0

Add slack variables

min f(x)
s.t.g(x) =0
h(x) <0

Augmented Lagrangian Functions

La(z,s, A, 1, p)

Lagrangian multipliers

/ \

f@)+ Y i) + > |

ick jeT

(hj(z) + 55)

+Z%mm+zgwu+m

ief \ €1 /

Penalty terms

Update multipliers

(zF) | g(k))

= argmin L 4(x, s, ) ;L“"}, p“"]),
T,s

A = A8 4+ pMgi(a®), ek,
k+1 k E
) = 4 ol (hy (@) + 5,

jel.
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E:IIE Simulated Bifurcation

Ising Model: , , , ,
Each operator a is approximated by a complex amplitude i + ¥
E(s) = Z qut‘f_,—f—zm'ih
1<g (f)
— plt
Hﬂﬂ(xay'rf’] _Z_ﬂ1 +Z [ TI?
Quantum i—1
Or inspired
algorithm — % ZZ It'inIj,
i=1 j=1
Quantum mechanical Hamiltonian Update x and y by:
Kerr coefficient amplitude detuning i = Ay,
- [K
_ t2 2 (1) t2 2 1t .
H,(t) —h; 5 4~ ?‘(ui + aj) +|Aiq; a; 9 = — | K — (p(t) — A)z; + & Z i T
N N

B anzfﬁugaﬁ creation and

annihilation operator
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QHD-ALM

Model

h A

Initialize Lagrange
M y

ultipliers and Penalt

f Box Constrainted )

Q mpatrix

Simulated
Bifurcation

Quantum
Annealer

A

h

QHDOPT

A J

'L Model J

Solver

R
Sol

fon

Post-processing

A vy
Initial Point

v

Gradient Descent
Algorithm

Converge?
Yes

No

( Update Lagrange

Multipliers and Penalty
L Parameters

h

Final Solution

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING

Department of Electrical & Computer Engineering

Algorithm 2 QHD-ALM Framework

Input: Nonlinear programming model with constraints

Step 1: Initialize
Set initial Lagrange multipliers A0 and penalty parameter p(?)
Set iteration counter k£ = 0

8:
9:
10:

11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:

repeat
Step 2: Unconstrained Model Reformulation
Jonstruct the Augmented Lagrangian function:

2

(k)
Pi
£, A9, p0) = f(@) + DN gi(2) + ) Fomgile)?
i i

Step 3: Solve with QHDOPT
Formulate Q matrix from the unconstrained model

Use QHDOPT with either Simulated Bifurcation or Quantum Annealer to obtain a
raw solution

Step 4: Post-processing
Map the raw solution to original feasible space
Use it as an initial point for IPOPT
Step 5: Refinement with TPOPT
Run TPOPT to solve the box constrained NLP from initial point
Step b: Check Convergence
if convergence criteria is met then
Output: Final solution
Exit loop

else
Step 7: Update Parameters
Update AF+1) = \(K) 4 5B g(x)
Increase penalty pit1) > p(k)
k«—k+1

end if

until convergence is achieved
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QHD-ALM

N-
max Chyﬂ ((iN fin)

1

wer erid
(WPG E

t=0

grid

el d
€1 =€ +e; — By,

Emin {_: e i: bvma.m:'J
0 < ol < I;U,ma.}:
~P: = ;

pfnd :} O,

1
P

el _ .
e; = Al HHVy,

P+ pt = mAp

: ”ﬁfa

7

kAU

_—

ALM

—

f,, > ().
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Subject to:
0<pf

0<mn <100,81, >

(w]jyn(PN a ) | Z (-upml.rtr rid

2

Aegre(z) 4 ﬂ.‘:"r'l_.!(-"f)'2

—
=

<

pe(he(x) + s1,) 4 %(hl,t{i') Fs1,)°

=
=

2

pe(hae(x) + s2.) 4 %(hz,z{fﬁ) Fs2,0)%,

]
=

< PU,[IJ&N] Emiu <e < Ema}chf.l'id > (),

2
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OPTIMAL OBJECTIVE VALUE OF DIFFERENT METHODS

IPOPT 1k

Case | Pure-1POPT ($) Samples () ALM ($) | QHD-ALM (%)
1 6.42 892.06 6.42 8903.8
2 6.33 2312.92 6.33 23334
3 -760.23 14153.52 10124.05 13877
4 3040.31 19368.54 17423.74 18840.1

COMPUTATION TIME OF DIFFERENT METHODS

Case | Pure-IPOPT IPOFT 1k ALM QHD-ALM
Samples
] 0.089s 13s 1.31s 6.82s
2 0.289s 257s 3.18s 11.28s
3 1.767s 16 min 61.1s 78.2s
4 3.184s 52 min 351.58s 369.38s

UNIVERSITY of

HOUSTON

CULLEN COLLEGE of ENGINEERING
Department of Electrical & Computer Engineering

QHD-ALM achieves better
solution when facing
nonconvex problems than
classical solver

IPOPT 1k achieves best
solution but cost much time

Single IPOPT can not find the
optimal solution
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> Motivation and Quantum Theory

> Application |I: Quantum Assisted Combinatorial Benders’ Algorithm for the

Synergy of Hydrogen and Power Distribution Systems with Mobile Storage

> Application Il: Hybrid Quantum Classical Machine Learning with Knowledge

Distillation

> Application lll: Quantum Hamiltonian Decent based Augmented Lagrangian

Method for Constrained Nonconvex Nonlinear Optimization

> Conclusions and Future Work
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<+
lon Water
exch. pump
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Investigate a more complex
electrolyzor model.
Investigate a large-scale

power-to-hydrogen

. Add the temperature

variation into the modeling

42



>

p(®)

x,(0), y,(f)

X,(1), y,(t)

50

-0.5

-1.5

-15-1-050 05 1 1.5

X

1

1. Develop different descent methods for Ising model.

100

t

15-1-05005115

min f(z) =
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CULLEN COLLEGE of ENGINEERING
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2. Expand ALM-QHD to broader form of NLP

T T
> gi(zi) + ) pilax,)gi(xe,)
i—1 =1

High-order formulations
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« We developed a mixed-binary nonlinear programming (MBNLP) model for a hydrogen
system integrated with a truck transportation network.

« To solve the MBNLP, we designed a Quantum Assisted Combinatorial Benders’
Algorithm, using a quantum annealer for the binary master problem.

« QOur latest advancement enhanced the electrolyzor model and employed QHDOPT to

efficiently solve the resulting nonlinear problem using Quantum Hamiltonian Descent.

D::\WJaAUER
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